MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspsntrim Structured version   Unicode version

Theorem lspsntrim 17157
Description: Triangle-type inequality for span of a singleton of vector difference. (Contributed by NM, 25-Apr-2014.) (Revised by Mario Carneiro, 21-Jun-2014.)
Hypotheses
Ref Expression
lspsntrim.v  |-  V  =  ( Base `  W
)
lspsntrim.s  |-  .-  =  ( -g `  W )
lspsntrim.p  |-  .(+)  =  (
LSSum `  W )
lspsntrim.n  |-  N  =  ( LSpan `  W )
Assertion
Ref Expression
lspsntrim  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  ( N `  { ( X  .-  Y ) } )  C_  ( ( N `  { X } )  .(+)  ( N `
 { Y }
) ) )

Proof of Theorem lspsntrim
StepHypRef Expression
1 lspsntrim.v . . . . 5  |-  V  =  ( Base `  W
)
2 eqid 2441 . . . . 5  |-  ( invg `  W )  =  ( invg `  W )
31, 2lmodvnegcl 16966 . . . 4  |-  ( ( W  e.  LMod  /\  Y  e.  V )  ->  (
( invg `  W ) `  Y
)  e.  V )
433adant2 1002 . . 3  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( invg `  W ) `  Y
)  e.  V )
5 eqid 2441 . . . 4  |-  ( +g  `  W )  =  ( +g  `  W )
6 lspsntrim.n . . . 4  |-  N  =  ( LSpan `  W )
7 lspsntrim.p . . . 4  |-  .(+)  =  (
LSSum `  W )
81, 5, 6, 7lspsntri 17156 . . 3  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  (
( invg `  W ) `  Y
)  e.  V )  ->  ( N `  { ( X ( +g  `  W ) ( ( invg `  W ) `  Y
) ) } ) 
C_  ( ( N `
 { X }
)  .(+)  ( N `  { ( ( invg `  W ) `
 Y ) } ) ) )
94, 8syld3an3 1258 . 2  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  ( N `  { ( X ( +g  `  W
) ( ( invg `  W ) `
 Y ) ) } )  C_  (
( N `  { X } )  .(+)  ( N `
 { ( ( invg `  W
) `  Y ) } ) ) )
10 lspsntrim.s . . . . . 6  |-  .-  =  ( -g `  W )
111, 5, 2, 10grpsubval 15574 . . . . 5  |-  ( ( X  e.  V  /\  Y  e.  V )  ->  ( X  .-  Y
)  =  ( X ( +g  `  W
) ( ( invg `  W ) `
 Y ) ) )
1211sneqd 3886 . . . 4  |-  ( ( X  e.  V  /\  Y  e.  V )  ->  { ( X  .-  Y ) }  =  { ( X ( +g  `  W ) ( ( invg `  W ) `  Y
) ) } )
1312fveq2d 5692 . . 3  |-  ( ( X  e.  V  /\  Y  e.  V )  ->  ( N `  {
( X  .-  Y
) } )  =  ( N `  {
( X ( +g  `  W ) ( ( invg `  W
) `  Y )
) } ) )
14133adant1 1001 . 2  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  ( N `  { ( X  .-  Y ) } )  =  ( N `
 { ( X ( +g  `  W
) ( ( invg `  W ) `
 Y ) ) } ) )
151, 2, 6lspsnneg 17065 . . . . 5  |-  ( ( W  e.  LMod  /\  Y  e.  V )  ->  ( N `  { (
( invg `  W ) `  Y
) } )  =  ( N `  { Y } ) )
16153adant2 1002 . . . 4  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  ( N `  { (
( invg `  W ) `  Y
) } )  =  ( N `  { Y } ) )
1716eqcomd 2446 . . 3  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  ( N `  { Y } )  =  ( N `  { ( ( invg `  W ) `  Y
) } ) )
1817oveq2d 6106 . 2  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  (
( N `  { X } )  .(+)  ( N `
 { Y }
) )  =  ( ( N `  { X } )  .(+)  ( N `
 { ( ( invg `  W
) `  Y ) } ) ) )
199, 14, 183sstr4d 3396 1  |-  ( ( W  e.  LMod  /\  X  e.  V  /\  Y  e.  V )  ->  ( N `  { ( X  .-  Y ) } )  C_  ( ( N `  { X } )  .(+)  ( N `
 { Y }
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 960    = wceq 1364    e. wcel 1761    C_ wss 3325   {csn 3874   ` cfv 5415  (class class class)co 6090   Basecbs 14170   +g cplusg 14234   invgcminusg 15407   -gcsg 15409   LSSumclsm 16126   LModclmod 16928   LSpanclspn 17030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-cnex 9334  ax-resscn 9335  ax-1cn 9336  ax-icn 9337  ax-addcl 9338  ax-addrcl 9339  ax-mulcl 9340  ax-mulrcl 9341  ax-mulcom 9342  ax-addass 9343  ax-mulass 9344  ax-distr 9345  ax-i2m1 9346  ax-1ne0 9347  ax-1rid 9348  ax-rnegex 9349  ax-rrecex 9350  ax-cnre 9351  ax-pre-lttri 9352  ax-pre-lttrn 9353  ax-pre-ltadd 9354  ax-pre-mulgt0 9355
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-int 4126  df-iun 4170  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-om 6476  df-1st 6576  df-2nd 6577  df-recs 6828  df-rdg 6862  df-er 7097  df-en 7307  df-dom 7308  df-sdom 7309  df-pnf 9416  df-mnf 9417  df-xr 9418  df-ltxr 9419  df-le 9420  df-sub 9593  df-neg 9594  df-nn 10319  df-2 10376  df-ndx 14173  df-slot 14174  df-base 14175  df-sets 14176  df-ress 14177  df-plusg 14247  df-0g 14376  df-mnd 15411  df-submnd 15461  df-grp 15538  df-minusg 15539  df-sbg 15540  df-subg 15671  df-cntz 15828  df-lsm 16128  df-cmn 16272  df-abl 16273  df-mgp 16582  df-ur 16594  df-rng 16637  df-lmod 16930  df-lss 16992  df-lsp 17031
This theorem is referenced by:  mapdpglem1  35039  baerlem3lem2  35077  baerlem5alem2  35078  baerlem5blem2  35079
  Copyright terms: Public domain W3C validator