Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmmcvg Structured version   Visualization version   GIF version

Theorem lmmcvg 22867
 Description: Convergence property of a converging sequence. (Contributed by NM, 1-Jun-2007.) (Revised by Mario Carneiro, 1-May-2014.)
Hypotheses
Ref Expression
lmmbr.2 𝐽 = (MetOpen‘𝐷)
lmmbr.3 (𝜑𝐷 ∈ (∞Met‘𝑋))
lmmbr3.5 𝑍 = (ℤ𝑀)
lmmbr3.6 (𝜑𝑀 ∈ ℤ)
lmmbrf.7 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)
lmmcvg.8 (𝜑𝐹(⇝𝑡𝐽)𝑃)
lmmcvg.9 (𝜑𝑅 ∈ ℝ+)
Assertion
Ref Expression
lmmcvg (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐴𝑋 ∧ (𝐴𝐷𝑃) < 𝑅))
Distinct variable groups:   𝑗,𝑘,𝐷   𝑗,𝐹,𝑘   𝑃,𝑗,𝑘   𝑗,𝑋,𝑘   𝑗,𝑀   𝜑,𝑗,𝑘   𝑅,𝑗,𝑘   𝑗,𝑍,𝑘
Allowed substitution hints:   𝐴(𝑗,𝑘)   𝐽(𝑗,𝑘)   𝑀(𝑘)

Proof of Theorem lmmcvg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 lmmcvg.9 . . 3 (𝜑𝑅 ∈ ℝ+)
2 lmmcvg.8 . . . . 5 (𝜑𝐹(⇝𝑡𝐽)𝑃)
3 lmmbr.2 . . . . . 6 𝐽 = (MetOpen‘𝐷)
4 lmmbr.3 . . . . . 6 (𝜑𝐷 ∈ (∞Met‘𝑋))
5 lmmbr3.5 . . . . . 6 𝑍 = (ℤ𝑀)
6 lmmbr3.6 . . . . . 6 (𝜑𝑀 ∈ ℤ)
73, 4, 5, 6lmmbr3 22866 . . . . 5 (𝜑 → (𝐹(⇝𝑡𝐽)𝑃 ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥))))
82, 7mpbid 221 . . . 4 (𝜑 → (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥)))
98simp3d 1068 . . 3 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥))
10 breq2 4587 . . . . . 6 (𝑥 = 𝑅 → (((𝐹𝑘)𝐷𝑃) < 𝑥 ↔ ((𝐹𝑘)𝐷𝑃) < 𝑅))
11103anbi3d 1397 . . . . 5 (𝑥 = 𝑅 → ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥) ↔ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑅)))
1211rexralbidv 3040 . . . 4 (𝑥 = 𝑅 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥) ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑅)))
1312rspcv 3278 . . 3 (𝑅 ∈ ℝ+ → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑥) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑅)))
141, 9, 13sylc 63 . 2 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑅))
155uztrn2 11581 . . . . . 6 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
16 3simpc 1053 . . . . . . 7 ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑅) → ((𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑅))
17 lmmbrf.7 . . . . . . . . 9 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)
1817eleq1d 2672 . . . . . . . 8 ((𝜑𝑘𝑍) → ((𝐹𝑘) ∈ 𝑋𝐴𝑋))
1917oveq1d 6564 . . . . . . . . 9 ((𝜑𝑘𝑍) → ((𝐹𝑘)𝐷𝑃) = (𝐴𝐷𝑃))
2019breq1d 4593 . . . . . . . 8 ((𝜑𝑘𝑍) → (((𝐹𝑘)𝐷𝑃) < 𝑅 ↔ (𝐴𝐷𝑃) < 𝑅))
2118, 20anbi12d 743 . . . . . . 7 ((𝜑𝑘𝑍) → (((𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑅) ↔ (𝐴𝑋 ∧ (𝐴𝐷𝑃) < 𝑅)))
2216, 21syl5ib 233 . . . . . 6 ((𝜑𝑘𝑍) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑅) → (𝐴𝑋 ∧ (𝐴𝐷𝑃) < 𝑅)))
2315, 22sylan2 490 . . . . 5 ((𝜑 ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑅) → (𝐴𝑋 ∧ (𝐴𝐷𝑃) < 𝑅)))
2423anassrs 678 . . . 4 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑅) → (𝐴𝑋 ∧ (𝐴𝐷𝑃) < 𝑅)))
2524ralimdva 2945 . . 3 ((𝜑𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑅) → ∀𝑘 ∈ (ℤ𝑗)(𝐴𝑋 ∧ (𝐴𝐷𝑃) < 𝑅)))
2625reximdva 3000 . 2 (𝜑 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑋 ∧ ((𝐹𝑘)𝐷𝑃) < 𝑅) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐴𝑋 ∧ (𝐴𝐷𝑃) < 𝑅)))
2714, 26mpd 15 1 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐴𝑋 ∧ (𝐴𝐷𝑃) < 𝑅))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977  ∀wral 2896  ∃wrex 2897   class class class wbr 4583  dom cdm 5038  ‘cfv 5804  (class class class)co 6549   ↑pm cpm 7745  ℂcc 9813   < clt 9953  ℤcz 11254  ℤ≥cuz 11563  ℝ+crp 11708  ∞Metcxmt 19552  MetOpencmopn 19557  ⇝𝑡clm 20840 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-topgen 15927  df-psmet 19559  df-xmet 19560  df-bl 19562  df-mopn 19563  df-top 20521  df-bases 20522  df-topon 20523  df-lm 20843 This theorem is referenced by:  bfplem2  32792
 Copyright terms: Public domain W3C validator