Proof of Theorem lmmbrf
Step | Hyp | Ref
| Expression |
1 | | lmmbr.3 |
. . . 4
⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) |
2 | | lmmbrf.8 |
. . . 4
⊢ (𝜑 → 𝐹:𝑍⟶𝑋) |
3 | | elfvdm 6130 |
. . . . . 6
⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑋 ∈ dom ∞Met) |
4 | | cnex 9896 |
. . . . . 6
⊢ ℂ
∈ V |
5 | 3, 4 | jctir 559 |
. . . . 5
⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝑋 ∈ dom ∞Met ∧ ℂ ∈
V)) |
6 | | lmmbr3.5 |
. . . . . . 7
⊢ 𝑍 =
(ℤ≥‘𝑀) |
7 | | uzssz 11583 |
. . . . . . . 8
⊢
(ℤ≥‘𝑀) ⊆ ℤ |
8 | | zsscn 11262 |
. . . . . . . 8
⊢ ℤ
⊆ ℂ |
9 | 7, 8 | sstri 3577 |
. . . . . . 7
⊢
(ℤ≥‘𝑀) ⊆ ℂ |
10 | 6, 9 | eqsstri 3598 |
. . . . . 6
⊢ 𝑍 ⊆
ℂ |
11 | 10 | jctr 563 |
. . . . 5
⊢ (𝐹:𝑍⟶𝑋 → (𝐹:𝑍⟶𝑋 ∧ 𝑍 ⊆ ℂ)) |
12 | | elpm2r 7761 |
. . . . 5
⊢ (((𝑋 ∈ dom ∞Met ∧
ℂ ∈ V) ∧ (𝐹:𝑍⟶𝑋 ∧ 𝑍 ⊆ ℂ)) → 𝐹 ∈ (𝑋 ↑pm
ℂ)) |
13 | 5, 11, 12 | syl2an 493 |
. . . 4
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹:𝑍⟶𝑋) → 𝐹 ∈ (𝑋 ↑pm
ℂ)) |
14 | 1, 2, 13 | syl2anc 691 |
. . 3
⊢ (𝜑 → 𝐹 ∈ (𝑋 ↑pm
ℂ)) |
15 | 14 | biantrurd 528 |
. 2
⊢ (𝜑 → ((𝑃 ∈ 𝑋 ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑃) < 𝑥)) ↔ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧
(𝑃 ∈ 𝑋 ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑃) < 𝑥))))) |
16 | 6 | uztrn2 11581 |
. . . . . . . 8
⊢ ((𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝑘 ∈ 𝑍) |
17 | 16 | adantll 746 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝑘 ∈ 𝑍) |
18 | | lmmbrf.7 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) |
19 | 18 | oveq1d 6564 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝐹‘𝑘)𝐷𝑃) = (𝐴𝐷𝑃)) |
20 | 19 | breq1d 4593 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (((𝐹‘𝑘)𝐷𝑃) < 𝑥 ↔ (𝐴𝐷𝑃) < 𝑥)) |
21 | 20 | adantrl 748 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ 𝑍)) → (((𝐹‘𝑘)𝐷𝑃) < 𝑥 ↔ (𝐴𝐷𝑃) < 𝑥)) |
22 | | fdm 5964 |
. . . . . . . . . . . . . . . 16
⊢ (𝐹:𝑍⟶𝑋 → dom 𝐹 = 𝑍) |
23 | 2, 22 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → dom 𝐹 = 𝑍) |
24 | 23 | eleq2d 2673 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑘 ∈ dom 𝐹 ↔ 𝑘 ∈ 𝑍)) |
25 | 24 | biimpar 501 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝑘 ∈ dom 𝐹) |
26 | 2 | ffvelrnda 6267 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ 𝑋) |
27 | 25, 26 | jca 553 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋)) |
28 | 27 | biantrurd 528 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (((𝐹‘𝑘)𝐷𝑃) < 𝑥 ↔ ((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋) ∧ ((𝐹‘𝑘)𝐷𝑃) < 𝑥))) |
29 | | df-3an 1033 |
. . . . . . . . . . 11
⊢ ((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑃) < 𝑥) ↔ ((𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋) ∧ ((𝐹‘𝑘)𝐷𝑃) < 𝑥)) |
30 | 28, 29 | syl6bbr 277 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (((𝐹‘𝑘)𝐷𝑃) < 𝑥 ↔ (𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑃) < 𝑥))) |
31 | 30 | adantrl 748 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ 𝑍)) → (((𝐹‘𝑘)𝐷𝑃) < 𝑥 ↔ (𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑃) < 𝑥))) |
32 | 21, 31 | bitr3d 269 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ 𝑍)) → ((𝐴𝐷𝑃) < 𝑥 ↔ (𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑃) < 𝑥))) |
33 | 32 | anassrs 678 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) → ((𝐴𝐷𝑃) < 𝑥 ↔ (𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑃) < 𝑥))) |
34 | 17, 33 | syldan 486 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → ((𝐴𝐷𝑃) < 𝑥 ↔ (𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑃) < 𝑥))) |
35 | 34 | ralbidva 2968 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (∀𝑘 ∈ (ℤ≥‘𝑗)(𝐴𝐷𝑃) < 𝑥 ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑃) < 𝑥))) |
36 | 35 | rexbidva 3031 |
. . . 4
⊢ (𝜑 → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐴𝐷𝑃) < 𝑥 ↔ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑃) < 𝑥))) |
37 | 36 | ralbidv 2969 |
. . 3
⊢ (𝜑 → (∀𝑥 ∈ ℝ+
∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐴𝐷𝑃) < 𝑥 ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑃) < 𝑥))) |
38 | 37 | anbi2d 736 |
. 2
⊢ (𝜑 → ((𝑃 ∈ 𝑋 ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐴𝐷𝑃) < 𝑥) ↔ (𝑃 ∈ 𝑋 ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑃) < 𝑥)))) |
39 | | lmmbr.2 |
. . . 4
⊢ 𝐽 = (MetOpen‘𝐷) |
40 | | lmmbr3.6 |
. . . 4
⊢ (𝜑 → 𝑀 ∈ ℤ) |
41 | 39, 1, 6, 40 | lmmbr3 22866 |
. . 3
⊢ (𝜑 → (𝐹(⇝𝑡‘𝐽)𝑃 ↔ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧
𝑃 ∈ 𝑋 ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑃) < 𝑥)))) |
42 | | 3anass 1035 |
. . 3
⊢ ((𝐹 ∈ (𝑋 ↑pm ℂ) ∧
𝑃 ∈ 𝑋 ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑃) < 𝑥)) ↔ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧
(𝑃 ∈ 𝑋 ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑃) < 𝑥)))) |
43 | 41, 42 | syl6bb 275 |
. 2
⊢ (𝜑 → (𝐹(⇝𝑡‘𝐽)𝑃 ↔ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧
(𝑃 ∈ 𝑋 ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ ((𝐹‘𝑘)𝐷𝑃) < 𝑥))))) |
44 | 15, 38, 43 | 3bitr4rd 300 |
1
⊢ (𝜑 → (𝐹(⇝𝑡‘𝐽)𝑃 ↔ (𝑃 ∈ 𝑋 ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐴𝐷𝑃) < 𝑥))) |