Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmflf Structured version   Visualization version   GIF version

Theorem lmflf 21619
 Description: The topological limit relation on functions can be written in terms of the filter limit along the filter generated by the upper integer sets. (Contributed by Mario Carneiro, 13-Oct-2015.)
Hypotheses
Ref Expression
lmflf.1 𝑍 = (ℤ𝑀)
lmflf.2 𝐿 = (𝑍filGen(ℤ𝑍))
Assertion
Ref Expression
lmflf ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) → (𝐹(⇝𝑡𝐽)𝑃𝑃 ∈ ((𝐽 fLimf 𝐿)‘𝐹)))

Proof of Theorem lmflf
Dummy variables 𝑗 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uzf 11566 . . . . . . . 8 :ℤ⟶𝒫 ℤ
2 ffn 5958 . . . . . . . 8 (ℤ:ℤ⟶𝒫 ℤ → ℤ Fn ℤ)
31, 2ax-mp 5 . . . . . . 7 Fn ℤ
4 lmflf.1 . . . . . . . 8 𝑍 = (ℤ𝑀)
5 uzssz 11583 . . . . . . . 8 (ℤ𝑀) ⊆ ℤ
64, 5eqsstri 3598 . . . . . . 7 𝑍 ⊆ ℤ
7 imaeq2 5381 . . . . . . . . 9 (𝑦 = (ℤ𝑗) → (𝐹𝑦) = (𝐹 “ (ℤ𝑗)))
87sseq1d 3595 . . . . . . . 8 (𝑦 = (ℤ𝑗) → ((𝐹𝑦) ⊆ 𝑥 ↔ (𝐹 “ (ℤ𝑗)) ⊆ 𝑥))
98rexima 6401 . . . . . . 7 ((ℤ Fn ℤ ∧ 𝑍 ⊆ ℤ) → (∃𝑦 ∈ (ℤ𝑍)(𝐹𝑦) ⊆ 𝑥 ↔ ∃𝑗𝑍 (𝐹 “ (ℤ𝑗)) ⊆ 𝑥))
103, 6, 9mp2an 704 . . . . . 6 (∃𝑦 ∈ (ℤ𝑍)(𝐹𝑦) ⊆ 𝑥 ↔ ∃𝑗𝑍 (𝐹 “ (ℤ𝑗)) ⊆ 𝑥)
11 simpl3 1059 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) → 𝐹:𝑍𝑋)
12 ffun 5961 . . . . . . . . 9 (𝐹:𝑍𝑋 → Fun 𝐹)
1311, 12syl 17 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) → Fun 𝐹)
14 uzss 11584 . . . . . . . . . . 11 (𝑗 ∈ (ℤ𝑀) → (ℤ𝑗) ⊆ (ℤ𝑀))
1514, 4eleq2s 2706 . . . . . . . . . 10 (𝑗𝑍 → (ℤ𝑗) ⊆ (ℤ𝑀))
1615adantl 481 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) → (ℤ𝑗) ⊆ (ℤ𝑀))
17 fdm 5964 . . . . . . . . . . 11 (𝐹:𝑍𝑋 → dom 𝐹 = 𝑍)
1811, 17syl 17 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) → dom 𝐹 = 𝑍)
1918, 4syl6eq 2660 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) → dom 𝐹 = (ℤ𝑀))
2016, 19sseqtr4d 3605 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) → (ℤ𝑗) ⊆ dom 𝐹)
21 funimass4 6157 . . . . . . . 8 ((Fun 𝐹 ∧ (ℤ𝑗) ⊆ dom 𝐹) → ((𝐹 “ (ℤ𝑗)) ⊆ 𝑥 ↔ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑥))
2213, 20, 21syl2anc 691 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑗𝑍) → ((𝐹 “ (ℤ𝑗)) ⊆ 𝑥 ↔ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑥))
2322rexbidva 3031 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) → (∃𝑗𝑍 (𝐹 “ (ℤ𝑗)) ⊆ 𝑥 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑥))
2410, 23syl5rbb 272 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑥 ↔ ∃𝑦 ∈ (ℤ𝑍)(𝐹𝑦) ⊆ 𝑥))
2524imbi2d 329 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) → ((𝑃𝑥 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑥) ↔ (𝑃𝑥 → ∃𝑦 ∈ (ℤ𝑍)(𝐹𝑦) ⊆ 𝑥)))
2625ralbidv 2969 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) → (∀𝑥𝐽 (𝑃𝑥 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑥) ↔ ∀𝑥𝐽 (𝑃𝑥 → ∃𝑦 ∈ (ℤ𝑍)(𝐹𝑦) ⊆ 𝑥)))
2726anbi2d 736 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) → ((𝑃𝑋 ∧ ∀𝑥𝐽 (𝑃𝑥 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑥)) ↔ (𝑃𝑋 ∧ ∀𝑥𝐽 (𝑃𝑥 → ∃𝑦 ∈ (ℤ𝑍)(𝐹𝑦) ⊆ 𝑥))))
28 simp1 1054 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) → 𝐽 ∈ (TopOn‘𝑋))
29 simp2 1055 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) → 𝑀 ∈ ℤ)
30 simp3 1056 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) → 𝐹:𝑍𝑋)
31 eqidd 2611 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) ∧ 𝑘𝑍) → (𝐹𝑘) = (𝐹𝑘))
3228, 4, 29, 30, 31lmbrf 20874 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) → (𝐹(⇝𝑡𝐽)𝑃 ↔ (𝑃𝑋 ∧ ∀𝑥𝐽 (𝑃𝑥 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑥))))
334uzfbas 21512 . . 3 (𝑀 ∈ ℤ → (ℤ𝑍) ∈ (fBas‘𝑍))
34 lmflf.2 . . . 4 𝐿 = (𝑍filGen(ℤ𝑍))
3534flffbas 21609 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ (ℤ𝑍) ∈ (fBas‘𝑍) ∧ 𝐹:𝑍𝑋) → (𝑃 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ↔ (𝑃𝑋 ∧ ∀𝑥𝐽 (𝑃𝑥 → ∃𝑦 ∈ (ℤ𝑍)(𝐹𝑦) ⊆ 𝑥))))
3633, 35syl3an2 1352 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) → (𝑃 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ↔ (𝑃𝑋 ∧ ∀𝑥𝐽 (𝑃𝑥 → ∃𝑦 ∈ (ℤ𝑍)(𝐹𝑦) ⊆ 𝑥))))
3727, 32, 363bitr4d 299 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑀 ∈ ℤ ∧ 𝐹:𝑍𝑋) → (𝐹(⇝𝑡𝐽)𝑃𝑃 ∈ ((𝐽 fLimf 𝐿)‘𝐹)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977  ∀wral 2896  ∃wrex 2897   ⊆ wss 3540  𝒫 cpw 4108   class class class wbr 4583  dom cdm 5038   “ cima 5041  Fun wfun 5798   Fn wfn 5799  ⟶wf 5800  ‘cfv 5804  (class class class)co 6549  ℤcz 11254  ℤ≥cuz 11563  fBascfbas 19555  filGencfg 19556  TopOnctopon 20518  ⇝𝑡clm 20840   fLimf cflf 21549 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-z 11255  df-uz 11564  df-rest 15906  df-fbas 19564  df-fg 19565  df-top 20521  df-topon 20523  df-ntr 20634  df-nei 20712  df-lm 20843  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554 This theorem is referenced by:  cmetcaulem  22894
 Copyright terms: Public domain W3C validator