MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmflf Structured version   Unicode version

Theorem lmflf 20269
Description: The topological limit relation on functions can be written in terms of the filter limit along the filter generated by the upper integer sets. (Contributed by Mario Carneiro, 13-Oct-2015.)
Hypotheses
Ref Expression
lmflf.1  |-  Z  =  ( ZZ>= `  M )
lmflf.2  |-  L  =  ( Z filGen ( ZZ>= " Z ) )
Assertion
Ref Expression
lmflf  |-  ( ( J  e.  (TopOn `  X )  /\  M  e.  ZZ  /\  F : Z
--> X )  ->  ( F ( ~~> t `  J ) P  <->  P  e.  ( ( J  fLimf  L ) `  F ) ) )

Proof of Theorem lmflf
Dummy variables  j 
k  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uzf 11085 . . . . . . . 8  |-  ZZ>= : ZZ --> ~P ZZ
2 ffn 5731 . . . . . . . 8  |-  ( ZZ>= : ZZ --> ~P ZZ  ->  ZZ>=  Fn  ZZ )
31, 2ax-mp 5 . . . . . . 7  |-  ZZ>=  Fn  ZZ
4 lmflf.1 . . . . . . . 8  |-  Z  =  ( ZZ>= `  M )
5 uzssz 11101 . . . . . . . 8  |-  ( ZZ>= `  M )  C_  ZZ
64, 5eqsstri 3534 . . . . . . 7  |-  Z  C_  ZZ
7 imaeq2 5333 . . . . . . . . 9  |-  ( y  =  ( ZZ>= `  j
)  ->  ( F " y )  =  ( F " ( ZZ>= `  j ) ) )
87sseq1d 3531 . . . . . . . 8  |-  ( y  =  ( ZZ>= `  j
)  ->  ( ( F " y )  C_  x 
<->  ( F " ( ZZ>=
`  j ) ) 
C_  x ) )
98rexima 6139 . . . . . . 7  |-  ( (
ZZ>=  Fn  ZZ  /\  Z  C_  ZZ )  ->  ( E. y  e.  ( ZZ>=
" Z ) ( F " y ) 
C_  x  <->  E. j  e.  Z  ( F " ( ZZ>= `  j )
)  C_  x )
)
103, 6, 9mp2an 672 . . . . . 6  |-  ( E. y  e.  ( ZZ>= " Z ) ( F
" y )  C_  x 
<->  E. j  e.  Z  ( F " ( ZZ>= `  j ) )  C_  x )
11 simpl3 1001 . . . . . . . . 9  |-  ( ( ( J  e.  (TopOn `  X )  /\  M  e.  ZZ  /\  F : Z
--> X )  /\  j  e.  Z )  ->  F : Z --> X )
12 ffun 5733 . . . . . . . . 9  |-  ( F : Z --> X  ->  Fun  F )
1311, 12syl 16 . . . . . . . 8  |-  ( ( ( J  e.  (TopOn `  X )  /\  M  e.  ZZ  /\  F : Z
--> X )  /\  j  e.  Z )  ->  Fun  F )
14 uzss 11102 . . . . . . . . . . 11  |-  ( j  e.  ( ZZ>= `  M
)  ->  ( ZZ>= `  j )  C_  ( ZZ>=
`  M ) )
1514, 4eleq2s 2575 . . . . . . . . . 10  |-  ( j  e.  Z  ->  ( ZZ>=
`  j )  C_  ( ZZ>= `  M )
)
1615adantl 466 . . . . . . . . 9  |-  ( ( ( J  e.  (TopOn `  X )  /\  M  e.  ZZ  /\  F : Z
--> X )  /\  j  e.  Z )  ->  ( ZZ>=
`  j )  C_  ( ZZ>= `  M )
)
17 fdm 5735 . . . . . . . . . . 11  |-  ( F : Z --> X  ->  dom  F  =  Z )
1811, 17syl 16 . . . . . . . . . 10  |-  ( ( ( J  e.  (TopOn `  X )  /\  M  e.  ZZ  /\  F : Z
--> X )  /\  j  e.  Z )  ->  dom  F  =  Z )
1918, 4syl6eq 2524 . . . . . . . . 9  |-  ( ( ( J  e.  (TopOn `  X )  /\  M  e.  ZZ  /\  F : Z
--> X )  /\  j  e.  Z )  ->  dom  F  =  ( ZZ>= `  M
) )
2016, 19sseqtr4d 3541 . . . . . . . 8  |-  ( ( ( J  e.  (TopOn `  X )  /\  M  e.  ZZ  /\  F : Z
--> X )  /\  j  e.  Z )  ->  ( ZZ>=
`  j )  C_  dom  F )
21 funimass4 5918 . . . . . . . 8  |-  ( ( Fun  F  /\  ( ZZ>=
`  j )  C_  dom  F )  ->  (
( F " ( ZZ>=
`  j ) ) 
C_  x  <->  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  x ) )
2213, 20, 21syl2anc 661 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  M  e.  ZZ  /\  F : Z
--> X )  /\  j  e.  Z )  ->  (
( F " ( ZZ>=
`  j ) ) 
C_  x  <->  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  x ) )
2322rexbidva 2970 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  M  e.  ZZ  /\  F : Z
--> X )  ->  ( E. j  e.  Z  ( F " ( ZZ>= `  j ) )  C_  x 
<->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  x ) )
2410, 23syl5rbb 258 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  M  e.  ZZ  /\  F : Z
--> X )  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  x  <->  E. y  e.  ( ZZ>= " Z ) ( F " y ) 
C_  x ) )
2524imbi2d 316 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  M  e.  ZZ  /\  F : Z
--> X )  ->  (
( P  e.  x  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  x )  <->  ( P  e.  x  ->  E. y  e.  ( ZZ>= " Z ) ( F " y ) 
C_  x ) ) )
2625ralbidv 2903 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  M  e.  ZZ  /\  F : Z
--> X )  ->  ( A. x  e.  J  ( P  e.  x  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  x )  <->  A. x  e.  J  ( P  e.  x  ->  E. y  e.  ( ZZ>= " Z ) ( F " y ) 
C_  x ) ) )
2726anbi2d 703 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  M  e.  ZZ  /\  F : Z
--> X )  ->  (
( P  e.  X  /\  A. x  e.  J  ( P  e.  x  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  x ) )  <-> 
( P  e.  X  /\  A. x  e.  J  ( P  e.  x  ->  E. y  e.  (
ZZ>= " Z ) ( F " y ) 
C_  x ) ) ) )
28 simp1 996 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  M  e.  ZZ  /\  F : Z
--> X )  ->  J  e.  (TopOn `  X )
)
29 simp2 997 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  M  e.  ZZ  /\  F : Z
--> X )  ->  M  e.  ZZ )
30 simp3 998 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  M  e.  ZZ  /\  F : Z
--> X )  ->  F : Z --> X )
31 eqidd 2468 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  M  e.  ZZ  /\  F : Z
--> X )  /\  k  e.  Z )  ->  ( F `  k )  =  ( F `  k ) )
3228, 4, 29, 30, 31lmbrf 19555 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  M  e.  ZZ  /\  F : Z
--> X )  ->  ( F ( ~~> t `  J ) P  <->  ( P  e.  X  /\  A. x  e.  J  ( P  e.  x  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  x ) ) ) )
334uzfbas 20162 . . 3  |-  ( M  e.  ZZ  ->  ( ZZ>=
" Z )  e.  ( fBas `  Z
) )
34 lmflf.2 . . . 4  |-  L  =  ( Z filGen ( ZZ>= " Z ) )
3534flffbas 20259 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  ( ZZ>=
" Z )  e.  ( fBas `  Z
)  /\  F : Z
--> X )  ->  ( P  e.  ( ( J  fLimf  L ) `  F )  <->  ( P  e.  X  /\  A. x  e.  J  ( P  e.  x  ->  E. y  e.  ( ZZ>= " Z ) ( F " y ) 
C_  x ) ) ) )
3633, 35syl3an2 1262 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  M  e.  ZZ  /\  F : Z
--> X )  ->  ( P  e.  ( ( J  fLimf  L ) `  F )  <->  ( P  e.  X  /\  A. x  e.  J  ( P  e.  x  ->  E. y  e.  ( ZZ>= " Z ) ( F " y ) 
C_  x ) ) ) )
3727, 32, 363bitr4d 285 1  |-  ( ( J  e.  (TopOn `  X )  /\  M  e.  ZZ  /\  F : Z
--> X )  ->  ( F ( ~~> t `  J ) P  <->  P  e.  ( ( J  fLimf  L ) `  F ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   A.wral 2814   E.wrex 2815    C_ wss 3476   ~Pcpw 4010   class class class wbr 4447   dom cdm 4999   "cima 5002   Fun wfun 5582    Fn wfn 5583   -->wf 5584   ` cfv 5588  (class class class)co 6284   ZZcz 10864   ZZ>=cuz 11082   fBascfbas 18205   filGencfg 18206  TopOnctopon 19190   ~~> tclm 19521    fLimf cflf 20199
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576  ax-cnex 9548  ax-resscn 9549  ax-1cn 9550  ax-icn 9551  ax-addcl 9552  ax-addrcl 9553  ax-mulcl 9554  ax-mulrcl 9555  ax-mulcom 9556  ax-addass 9557  ax-mulass 9558  ax-distr 9559  ax-i2m1 9560  ax-1ne0 9561  ax-1rid 9562  ax-rnegex 9563  ax-rrecex 9564  ax-cnre 9565  ax-pre-lttri 9566  ax-pre-lttrn 9567  ax-pre-ltadd 9568  ax-pre-mulgt0 9569
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-riota 6245  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-om 6685  df-1st 6784  df-2nd 6785  df-recs 7042  df-rdg 7076  df-er 7311  df-map 7422  df-pm 7423  df-en 7517  df-dom 7518  df-sdom 7519  df-pnf 9630  df-mnf 9631  df-xr 9632  df-ltxr 9633  df-le 9634  df-sub 9807  df-neg 9808  df-nn 10537  df-z 10865  df-uz 11083  df-rest 14678  df-fbas 18215  df-fg 18216  df-top 19194  df-topon 19197  df-ntr 19315  df-nei 19393  df-lm 19524  df-fil 20110  df-fm 20202  df-flim 20203  df-flf 20204
This theorem is referenced by:  cmetcaulem  21490
  Copyright terms: Public domain W3C validator