Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lmdvg Structured version   Visualization version   GIF version

Theorem lmdvg 29327
Description: If a monotonic sequence of real numbers diverges, it is unbounded. (Contributed by Thierry Arnoux, 4-Aug-2017.)
Hypotheses
Ref Expression
lmdvg.1 (𝜑𝐹:ℕ⟶(0[,)+∞))
lmdvg.2 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ≤ (𝐹‘(𝑘 + 1)))
lmdvg.3 (𝜑 → ¬ 𝐹 ∈ dom ⇝ )
Assertion
Ref Expression
lmdvg (𝜑 → ∀𝑥 ∈ ℝ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < (𝐹𝑘))
Distinct variable groups:   𝑗,𝑘,𝑥,𝐹   𝜑,𝑗,𝑘,𝑥

Proof of Theorem lmdvg
Dummy variable 𝑙 is distinct from all other variables.
StepHypRef Expression
1 lmdvg.3 . . . . . . 7 (𝜑 → ¬ 𝐹 ∈ dom ⇝ )
2 nnuz 11599 . . . . . . . . 9 ℕ = (ℤ‘1)
3 1zzd 11285 . . . . . . . . 9 ((𝜑 ∧ ∃𝑥 ∈ ℝ ∀𝑗 ∈ ℕ (𝐹𝑗) ≤ 𝑥) → 1 ∈ ℤ)
4 lmdvg.1 . . . . . . . . . . 11 (𝜑𝐹:ℕ⟶(0[,)+∞))
5 rge0ssre 12151 . . . . . . . . . . 11 (0[,)+∞) ⊆ ℝ
6 fss 5969 . . . . . . . . . . 11 ((𝐹:ℕ⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ ℝ) → 𝐹:ℕ⟶ℝ)
74, 5, 6sylancl 693 . . . . . . . . . 10 (𝜑𝐹:ℕ⟶ℝ)
87adantr 480 . . . . . . . . 9 ((𝜑 ∧ ∃𝑥 ∈ ℝ ∀𝑗 ∈ ℕ (𝐹𝑗) ≤ 𝑥) → 𝐹:ℕ⟶ℝ)
9 lmdvg.2 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ≤ (𝐹‘(𝑘 + 1)))
109ralrimiva 2949 . . . . . . . . . . . 12 (𝜑 → ∀𝑘 ∈ ℕ (𝐹𝑘) ≤ (𝐹‘(𝑘 + 1)))
11 fveq2 6103 . . . . . . . . . . . . . 14 (𝑘 = 𝑙 → (𝐹𝑘) = (𝐹𝑙))
12 oveq1 6556 . . . . . . . . . . . . . . 15 (𝑘 = 𝑙 → (𝑘 + 1) = (𝑙 + 1))
1312fveq2d 6107 . . . . . . . . . . . . . 14 (𝑘 = 𝑙 → (𝐹‘(𝑘 + 1)) = (𝐹‘(𝑙 + 1)))
1411, 13breq12d 4596 . . . . . . . . . . . . 13 (𝑘 = 𝑙 → ((𝐹𝑘) ≤ (𝐹‘(𝑘 + 1)) ↔ (𝐹𝑙) ≤ (𝐹‘(𝑙 + 1))))
1514cbvralv 3147 . . . . . . . . . . . 12 (∀𝑘 ∈ ℕ (𝐹𝑘) ≤ (𝐹‘(𝑘 + 1)) ↔ ∀𝑙 ∈ ℕ (𝐹𝑙) ≤ (𝐹‘(𝑙 + 1)))
1610, 15sylib 207 . . . . . . . . . . 11 (𝜑 → ∀𝑙 ∈ ℕ (𝐹𝑙) ≤ (𝐹‘(𝑙 + 1)))
1716r19.21bi 2916 . . . . . . . . . 10 ((𝜑𝑙 ∈ ℕ) → (𝐹𝑙) ≤ (𝐹‘(𝑙 + 1)))
1817adantlr 747 . . . . . . . . 9 (((𝜑 ∧ ∃𝑥 ∈ ℝ ∀𝑗 ∈ ℕ (𝐹𝑗) ≤ 𝑥) ∧ 𝑙 ∈ ℕ) → (𝐹𝑙) ≤ (𝐹‘(𝑙 + 1)))
19 simpr 476 . . . . . . . . . 10 ((𝜑 ∧ ∃𝑥 ∈ ℝ ∀𝑗 ∈ ℕ (𝐹𝑗) ≤ 𝑥) → ∃𝑥 ∈ ℝ ∀𝑗 ∈ ℕ (𝐹𝑗) ≤ 𝑥)
20 fveq2 6103 . . . . . . . . . . . . 13 (𝑗 = 𝑙 → (𝐹𝑗) = (𝐹𝑙))
2120breq1d 4593 . . . . . . . . . . . 12 (𝑗 = 𝑙 → ((𝐹𝑗) ≤ 𝑥 ↔ (𝐹𝑙) ≤ 𝑥))
2221cbvralv 3147 . . . . . . . . . . 11 (∀𝑗 ∈ ℕ (𝐹𝑗) ≤ 𝑥 ↔ ∀𝑙 ∈ ℕ (𝐹𝑙) ≤ 𝑥)
2322rexbii 3023 . . . . . . . . . 10 (∃𝑥 ∈ ℝ ∀𝑗 ∈ ℕ (𝐹𝑗) ≤ 𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑙 ∈ ℕ (𝐹𝑙) ≤ 𝑥)
2419, 23sylib 207 . . . . . . . . 9 ((𝜑 ∧ ∃𝑥 ∈ ℝ ∀𝑗 ∈ ℕ (𝐹𝑗) ≤ 𝑥) → ∃𝑥 ∈ ℝ ∀𝑙 ∈ ℕ (𝐹𝑙) ≤ 𝑥)
252, 3, 8, 18, 24climsup 14248 . . . . . . . 8 ((𝜑 ∧ ∃𝑥 ∈ ℝ ∀𝑗 ∈ ℕ (𝐹𝑗) ≤ 𝑥) → 𝐹 ⇝ sup(ran 𝐹, ℝ, < ))
26 nnex 10903 . . . . . . . . . . 11 ℕ ∈ V
27 fex 6394 . . . . . . . . . . 11 ((𝐹:ℕ⟶(0[,)+∞) ∧ ℕ ∈ V) → 𝐹 ∈ V)
284, 26, 27sylancl 693 . . . . . . . . . 10 (𝜑𝐹 ∈ V)
2928adantr 480 . . . . . . . . 9 ((𝜑𝐹 ⇝ sup(ran 𝐹, ℝ, < )) → 𝐹 ∈ V)
30 ltso 9997 . . . . . . . . . . 11 < Or ℝ
3130supex 8252 . . . . . . . . . 10 sup(ran 𝐹, ℝ, < ) ∈ V
3231a1i 11 . . . . . . . . 9 ((𝜑𝐹 ⇝ sup(ran 𝐹, ℝ, < )) → sup(ran 𝐹, ℝ, < ) ∈ V)
33 simpr 476 . . . . . . . . 9 ((𝜑𝐹 ⇝ sup(ran 𝐹, ℝ, < )) → 𝐹 ⇝ sup(ran 𝐹, ℝ, < ))
34 breldmg 5252 . . . . . . . . 9 ((𝐹 ∈ V ∧ sup(ran 𝐹, ℝ, < ) ∈ V ∧ 𝐹 ⇝ sup(ran 𝐹, ℝ, < )) → 𝐹 ∈ dom ⇝ )
3529, 32, 33, 34syl3anc 1318 . . . . . . . 8 ((𝜑𝐹 ⇝ sup(ran 𝐹, ℝ, < )) → 𝐹 ∈ dom ⇝ )
3625, 35syldan 486 . . . . . . 7 ((𝜑 ∧ ∃𝑥 ∈ ℝ ∀𝑗 ∈ ℕ (𝐹𝑗) ≤ 𝑥) → 𝐹 ∈ dom ⇝ )
371, 36mtand 689 . . . . . 6 (𝜑 → ¬ ∃𝑥 ∈ ℝ ∀𝑗 ∈ ℕ (𝐹𝑗) ≤ 𝑥)
38 ralnex 2975 . . . . . 6 (∀𝑥 ∈ ℝ ¬ ∀𝑗 ∈ ℕ (𝐹𝑗) ≤ 𝑥 ↔ ¬ ∃𝑥 ∈ ℝ ∀𝑗 ∈ ℕ (𝐹𝑗) ≤ 𝑥)
3937, 38sylibr 223 . . . . 5 (𝜑 → ∀𝑥 ∈ ℝ ¬ ∀𝑗 ∈ ℕ (𝐹𝑗) ≤ 𝑥)
40 simplr 788 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗 ∈ ℕ) → 𝑥 ∈ ℝ)
417adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ) → 𝐹:ℕ⟶ℝ)
4241ffvelrnda 6267 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (𝐹𝑗) ∈ ℝ)
4340, 42ltnled 10063 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (𝑥 < (𝐹𝑗) ↔ ¬ (𝐹𝑗) ≤ 𝑥))
4443rexbidva 3031 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (∃𝑗 ∈ ℕ 𝑥 < (𝐹𝑗) ↔ ∃𝑗 ∈ ℕ ¬ (𝐹𝑗) ≤ 𝑥))
45 rexnal 2978 . . . . . . 7 (∃𝑗 ∈ ℕ ¬ (𝐹𝑗) ≤ 𝑥 ↔ ¬ ∀𝑗 ∈ ℕ (𝐹𝑗) ≤ 𝑥)
4644, 45syl6bb 275 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (∃𝑗 ∈ ℕ 𝑥 < (𝐹𝑗) ↔ ¬ ∀𝑗 ∈ ℕ (𝐹𝑗) ≤ 𝑥))
4746ralbidva 2968 . . . . 5 (𝜑 → (∀𝑥 ∈ ℝ ∃𝑗 ∈ ℕ 𝑥 < (𝐹𝑗) ↔ ∀𝑥 ∈ ℝ ¬ ∀𝑗 ∈ ℕ (𝐹𝑗) ≤ 𝑥))
4839, 47mpbird 246 . . . 4 (𝜑 → ∀𝑥 ∈ ℝ ∃𝑗 ∈ ℕ 𝑥 < (𝐹𝑗))
4948r19.21bi 2916 . . 3 ((𝜑𝑥 ∈ ℝ) → ∃𝑗 ∈ ℕ 𝑥 < (𝐹𝑗))
5040ad2antrr 758 . . . . . . 7 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗 ∈ ℕ) ∧ 𝑥 < (𝐹𝑗)) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑥 ∈ ℝ)
5142ad2antrr 758 . . . . . . 7 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗 ∈ ℕ) ∧ 𝑥 < (𝐹𝑗)) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑗) ∈ ℝ)
5241ad3antrrr 762 . . . . . . . 8 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗 ∈ ℕ) ∧ 𝑥 < (𝐹𝑗)) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝐹:ℕ⟶ℝ)
53 uznnssnn 11611 . . . . . . . . . 10 (𝑗 ∈ ℕ → (ℤ𝑗) ⊆ ℕ)
5453ad3antlr 763 . . . . . . . . 9 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗 ∈ ℕ) ∧ 𝑥 < (𝐹𝑗)) ∧ 𝑘 ∈ (ℤ𝑗)) → (ℤ𝑗) ⊆ ℕ)
55 simpr 476 . . . . . . . . 9 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗 ∈ ℕ) ∧ 𝑥 < (𝐹𝑗)) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ (ℤ𝑗))
5654, 55sseldd 3569 . . . . . . . 8 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗 ∈ ℕ) ∧ 𝑥 < (𝐹𝑗)) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ ℕ)
5752, 56ffvelrnd 6268 . . . . . . 7 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗 ∈ ℕ) ∧ 𝑥 < (𝐹𝑗)) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ ℝ)
58 simplr 788 . . . . . . 7 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗 ∈ ℕ) ∧ 𝑥 < (𝐹𝑗)) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑥 < (𝐹𝑗))
59 simp-4l 802 . . . . . . . 8 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗 ∈ ℕ) ∧ 𝑥 < (𝐹𝑗)) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝜑)
60 simpllr 795 . . . . . . . 8 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗 ∈ ℕ) ∧ 𝑥 < (𝐹𝑗)) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑗 ∈ ℕ)
61 simpr 476 . . . . . . . . 9 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ (ℤ𝑗))
627ad3antrrr 762 . . . . . . . . . 10 ((((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑙 ∈ (𝑗...𝑘)) → 𝐹:ℕ⟶ℝ)
63 fzssnn 12256 . . . . . . . . . . . 12 (𝑗 ∈ ℕ → (𝑗...𝑘) ⊆ ℕ)
6463ad3antlr 763 . . . . . . . . . . 11 ((((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑙 ∈ (𝑗...𝑘)) → (𝑗...𝑘) ⊆ ℕ)
65 simpr 476 . . . . . . . . . . 11 ((((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑙 ∈ (𝑗...𝑘)) → 𝑙 ∈ (𝑗...𝑘))
6664, 65sseldd 3569 . . . . . . . . . 10 ((((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑙 ∈ (𝑗...𝑘)) → 𝑙 ∈ ℕ)
6762, 66ffvelrnd 6268 . . . . . . . . 9 ((((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑙 ∈ (𝑗...𝑘)) → (𝐹𝑙) ∈ ℝ)
68 simplll 794 . . . . . . . . . 10 ((((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑙 ∈ (𝑗...(𝑘 − 1))) → 𝜑)
69 fzssnn 12256 . . . . . . . . . . . 12 (𝑗 ∈ ℕ → (𝑗...(𝑘 − 1)) ⊆ ℕ)
7069ad3antlr 763 . . . . . . . . . . 11 ((((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑙 ∈ (𝑗...(𝑘 − 1))) → (𝑗...(𝑘 − 1)) ⊆ ℕ)
71 simpr 476 . . . . . . . . . . 11 ((((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑙 ∈ (𝑗...(𝑘 − 1))) → 𝑙 ∈ (𝑗...(𝑘 − 1)))
7270, 71sseldd 3569 . . . . . . . . . 10 ((((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑙 ∈ (𝑗...(𝑘 − 1))) → 𝑙 ∈ ℕ)
7368, 72, 17syl2anc 691 . . . . . . . . 9 ((((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑙 ∈ (𝑗...(𝑘 − 1))) → (𝐹𝑙) ≤ (𝐹‘(𝑙 + 1)))
7461, 67, 73monoord 12693 . . . . . . . 8 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑗) ≤ (𝐹𝑘))
7559, 60, 55, 74syl21anc 1317 . . . . . . 7 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗 ∈ ℕ) ∧ 𝑥 < (𝐹𝑗)) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑗) ≤ (𝐹𝑘))
7650, 51, 57, 58, 75ltletrd 10076 . . . . . 6 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑗 ∈ ℕ) ∧ 𝑥 < (𝐹𝑗)) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑥 < (𝐹𝑘))
7776ralrimiva 2949 . . . . 5 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗 ∈ ℕ) ∧ 𝑥 < (𝐹𝑗)) → ∀𝑘 ∈ (ℤ𝑗)𝑥 < (𝐹𝑘))
7877ex 449 . . . 4 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (𝑥 < (𝐹𝑗) → ∀𝑘 ∈ (ℤ𝑗)𝑥 < (𝐹𝑘)))
7978reximdva 3000 . . 3 ((𝜑𝑥 ∈ ℝ) → (∃𝑗 ∈ ℕ 𝑥 < (𝐹𝑗) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < (𝐹𝑘)))
8049, 79mpd 15 . 2 ((𝜑𝑥 ∈ ℝ) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < (𝐹𝑘))
8180ralrimiva 2949 1 (𝜑 → ∀𝑥 ∈ ℝ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)𝑥 < (𝐹𝑘))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383   = wceq 1475  wcel 1977  wral 2896  wrex 2897  Vcvv 3173  wss 3540   class class class wbr 4583  dom cdm 5038  ran crn 5039  wf 5800  cfv 5804  (class class class)co 6549  supcsup 8229  cr 9814  0cc0 9815  1c1 9816   + caddc 9818  +∞cpnf 9950   < clt 9953  cle 9954  cmin 10145  cn 10897  cuz 11563  [,)cico 12048  ...cfz 12197  cli 14063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-ico 12052  df-fz 12198  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067
This theorem is referenced by:  lmdvglim  29328  esumcvg  29475
  Copyright terms: Public domain W3C validator