MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lfinun Structured version   Visualization version   GIF version

Theorem lfinun 21138
Description: Adding a finite set preserves locally finite covers. (Contributed by Thierry Arnoux, 31-Jan-2020.)
Assertion
Ref Expression
lfinun ((𝐴 ∈ (LocFin‘𝐽) ∧ 𝐵 ∈ Fin ∧ 𝐵 𝐽) → (𝐴𝐵) ∈ (LocFin‘𝐽))

Proof of Theorem lfinun
Dummy variables 𝑛 𝑠 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 locfintop 21134 . . . . 5 (𝐴 ∈ (LocFin‘𝐽) → 𝐽 ∈ Top)
21ad2antrr 758 . . . 4 (((𝐴 ∈ (LocFin‘𝐽) ∧ 𝐵 ∈ Fin) ∧ 𝐵 𝐽) → 𝐽 ∈ Top)
3 ssequn2 3748 . . . . . . . 8 ( 𝐵 𝐽 ↔ ( 𝐽 𝐵) = 𝐽)
43biimpi 205 . . . . . . 7 ( 𝐵 𝐽 → ( 𝐽 𝐵) = 𝐽)
54adantl 481 . . . . . 6 (((𝐴 ∈ (LocFin‘𝐽) ∧ 𝐵 ∈ Fin) ∧ 𝐵 𝐽) → ( 𝐽 𝐵) = 𝐽)
6 eqid 2610 . . . . . . . . 9 𝐽 = 𝐽
7 eqid 2610 . . . . . . . . 9 𝐴 = 𝐴
86, 7locfinbas 21135 . . . . . . . 8 (𝐴 ∈ (LocFin‘𝐽) → 𝐽 = 𝐴)
98ad2antrr 758 . . . . . . 7 (((𝐴 ∈ (LocFin‘𝐽) ∧ 𝐵 ∈ Fin) ∧ 𝐵 𝐽) → 𝐽 = 𝐴)
109uneq1d 3728 . . . . . 6 (((𝐴 ∈ (LocFin‘𝐽) ∧ 𝐵 ∈ Fin) ∧ 𝐵 𝐽) → ( 𝐽 𝐵) = ( 𝐴 𝐵))
115, 10eqtr3d 2646 . . . . 5 (((𝐴 ∈ (LocFin‘𝐽) ∧ 𝐵 ∈ Fin) ∧ 𝐵 𝐽) → 𝐽 = ( 𝐴 𝐵))
12 uniun 4392 . . . . 5 (𝐴𝐵) = ( 𝐴 𝐵)
1311, 12syl6eqr 2662 . . . 4 (((𝐴 ∈ (LocFin‘𝐽) ∧ 𝐵 ∈ Fin) ∧ 𝐵 𝐽) → 𝐽 = (𝐴𝐵))
146locfinnei 21136 . . . . . . . 8 ((𝐴 ∈ (LocFin‘𝐽) ∧ 𝑥 𝐽) → ∃𝑛𝐽 (𝑥𝑛 ∧ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin))
1514adantlr 747 . . . . . . 7 (((𝐴 ∈ (LocFin‘𝐽) ∧ 𝐵 ∈ Fin) ∧ 𝑥 𝐽) → ∃𝑛𝐽 (𝑥𝑛 ∧ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin))
1615adantlr 747 . . . . . 6 ((((𝐴 ∈ (LocFin‘𝐽) ∧ 𝐵 ∈ Fin) ∧ 𝐵 𝐽) ∧ 𝑥 𝐽) → ∃𝑛𝐽 (𝑥𝑛 ∧ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin))
17 simpr 476 . . . . . . . . . . 11 (((𝐴 ∈ (LocFin‘𝐽) ∧ 𝐵 ∈ Fin) ∧ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin) → {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin)
18 rabfi 8070 . . . . . . . . . . . 12 (𝐵 ∈ Fin → {𝑠𝐵 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin)
1918ad2antlr 759 . . . . . . . . . . 11 (((𝐴 ∈ (LocFin‘𝐽) ∧ 𝐵 ∈ Fin) ∧ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin) → {𝑠𝐵 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin)
20 rabun2 3865 . . . . . . . . . . . 12 {𝑠 ∈ (𝐴𝐵) ∣ (𝑠𝑛) ≠ ∅} = ({𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∪ {𝑠𝐵 ∣ (𝑠𝑛) ≠ ∅})
21 unfi 8112 . . . . . . . . . . . 12 (({𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin ∧ {𝑠𝐵 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin) → ({𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∪ {𝑠𝐵 ∣ (𝑠𝑛) ≠ ∅}) ∈ Fin)
2220, 21syl5eqel 2692 . . . . . . . . . . 11 (({𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin ∧ {𝑠𝐵 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin) → {𝑠 ∈ (𝐴𝐵) ∣ (𝑠𝑛) ≠ ∅} ∈ Fin)
2317, 19, 22syl2anc 691 . . . . . . . . . 10 (((𝐴 ∈ (LocFin‘𝐽) ∧ 𝐵 ∈ Fin) ∧ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin) → {𝑠 ∈ (𝐴𝐵) ∣ (𝑠𝑛) ≠ ∅} ∈ Fin)
2423ex 449 . . . . . . . . 9 ((𝐴 ∈ (LocFin‘𝐽) ∧ 𝐵 ∈ Fin) → ({𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin → {𝑠 ∈ (𝐴𝐵) ∣ (𝑠𝑛) ≠ ∅} ∈ Fin))
2524ad2antrr 758 . . . . . . . 8 ((((𝐴 ∈ (LocFin‘𝐽) ∧ 𝐵 ∈ Fin) ∧ 𝐵 𝐽) ∧ 𝑥 𝐽) → ({𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin → {𝑠 ∈ (𝐴𝐵) ∣ (𝑠𝑛) ≠ ∅} ∈ Fin))
2625anim2d 587 . . . . . . 7 ((((𝐴 ∈ (LocFin‘𝐽) ∧ 𝐵 ∈ Fin) ∧ 𝐵 𝐽) ∧ 𝑥 𝐽) → ((𝑥𝑛 ∧ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin) → (𝑥𝑛 ∧ {𝑠 ∈ (𝐴𝐵) ∣ (𝑠𝑛) ≠ ∅} ∈ Fin)))
2726reximdv 2999 . . . . . 6 ((((𝐴 ∈ (LocFin‘𝐽) ∧ 𝐵 ∈ Fin) ∧ 𝐵 𝐽) ∧ 𝑥 𝐽) → (∃𝑛𝐽 (𝑥𝑛 ∧ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin) → ∃𝑛𝐽 (𝑥𝑛 ∧ {𝑠 ∈ (𝐴𝐵) ∣ (𝑠𝑛) ≠ ∅} ∈ Fin)))
2816, 27mpd 15 . . . . 5 ((((𝐴 ∈ (LocFin‘𝐽) ∧ 𝐵 ∈ Fin) ∧ 𝐵 𝐽) ∧ 𝑥 𝐽) → ∃𝑛𝐽 (𝑥𝑛 ∧ {𝑠 ∈ (𝐴𝐵) ∣ (𝑠𝑛) ≠ ∅} ∈ Fin))
2928ralrimiva 2949 . . . 4 (((𝐴 ∈ (LocFin‘𝐽) ∧ 𝐵 ∈ Fin) ∧ 𝐵 𝐽) → ∀𝑥 𝐽𝑛𝐽 (𝑥𝑛 ∧ {𝑠 ∈ (𝐴𝐵) ∣ (𝑠𝑛) ≠ ∅} ∈ Fin))
302, 13, 293jca 1235 . . 3 (((𝐴 ∈ (LocFin‘𝐽) ∧ 𝐵 ∈ Fin) ∧ 𝐵 𝐽) → (𝐽 ∈ Top ∧ 𝐽 = (𝐴𝐵) ∧ ∀𝑥 𝐽𝑛𝐽 (𝑥𝑛 ∧ {𝑠 ∈ (𝐴𝐵) ∣ (𝑠𝑛) ≠ ∅} ∈ Fin)))
31303impa 1251 . 2 ((𝐴 ∈ (LocFin‘𝐽) ∧ 𝐵 ∈ Fin ∧ 𝐵 𝐽) → (𝐽 ∈ Top ∧ 𝐽 = (𝐴𝐵) ∧ ∀𝑥 𝐽𝑛𝐽 (𝑥𝑛 ∧ {𝑠 ∈ (𝐴𝐵) ∣ (𝑠𝑛) ≠ ∅} ∈ Fin)))
32 eqid 2610 . . 3 (𝐴𝐵) = (𝐴𝐵)
336, 32islocfin 21130 . 2 ((𝐴𝐵) ∈ (LocFin‘𝐽) ↔ (𝐽 ∈ Top ∧ 𝐽 = (𝐴𝐵) ∧ ∀𝑥 𝐽𝑛𝐽 (𝑥𝑛 ∧ {𝑠 ∈ (𝐴𝐵) ∣ (𝑠𝑛) ≠ ∅} ∈ Fin)))
3431, 33sylibr 223 1 ((𝐴 ∈ (LocFin‘𝐽) ∧ 𝐵 ∈ Fin ∧ 𝐵 𝐽) → (𝐴𝐵) ∈ (LocFin‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wral 2896  wrex 2897  {crab 2900  cun 3538  cin 3539  wss 3540  c0 3874   cuni 4372  cfv 5804  Fincfn 7841  Topctop 20517  LocFinclocfin 21117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-oadd 7451  df-er 7629  df-en 7842  df-fin 7845  df-top 20521  df-locfin 21120
This theorem is referenced by:  locfinref  29236
  Copyright terms: Public domain W3C validator