MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islocfin Structured version   Visualization version   GIF version

Theorem islocfin 21130
Description: The statement "is a locally finite cover." (Contributed by Jeff Hankins, 21-Jan-2010.)
Hypotheses
Ref Expression
islocfin.1 𝑋 = 𝐽
islocfin.2 𝑌 = 𝐴
Assertion
Ref Expression
islocfin (𝐴 ∈ (LocFin‘𝐽) ↔ (𝐽 ∈ Top ∧ 𝑋 = 𝑌 ∧ ∀𝑥𝑋𝑛𝐽 (𝑥𝑛 ∧ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin)))
Distinct variable groups:   𝑛,𝑠,𝑥,𝐴   𝑛,𝐽,𝑥   𝑥,𝑋
Allowed substitution hints:   𝐽(𝑠)   𝑋(𝑛,𝑠)   𝑌(𝑥,𝑛,𝑠)

Proof of Theorem islocfin
Dummy variables 𝑗 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-locfin 21120 . . . . 5 LocFin = (𝑗 ∈ Top ↦ {𝑦 ∣ ( 𝑗 = 𝑦 ∧ ∀𝑥 𝑗𝑛𝑗 (𝑥𝑛 ∧ {𝑠𝑦 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin))})
21dmmptss 5548 . . . 4 dom LocFin ⊆ Top
3 elfvdm 6130 . . . 4 (𝐴 ∈ (LocFin‘𝐽) → 𝐽 ∈ dom LocFin)
42, 3sseldi 3566 . . 3 (𝐴 ∈ (LocFin‘𝐽) → 𝐽 ∈ Top)
5 eqimss2 3621 . . . . . . . . . . 11 (𝑋 = 𝑦 𝑦𝑋)
6 sspwuni 4547 . . . . . . . . . . 11 (𝑦 ⊆ 𝒫 𝑋 𝑦𝑋)
75, 6sylibr 223 . . . . . . . . . 10 (𝑋 = 𝑦𝑦 ⊆ 𝒫 𝑋)
8 selpw 4115 . . . . . . . . . 10 (𝑦 ∈ 𝒫 𝒫 𝑋𝑦 ⊆ 𝒫 𝑋)
97, 8sylibr 223 . . . . . . . . 9 (𝑋 = 𝑦𝑦 ∈ 𝒫 𝒫 𝑋)
109adantr 480 . . . . . . . 8 ((𝑋 = 𝑦 ∧ ∀𝑥𝑋𝑛𝐽 (𝑥𝑛 ∧ {𝑠𝑦 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin)) → 𝑦 ∈ 𝒫 𝒫 𝑋)
1110abssi 3640 . . . . . . 7 {𝑦 ∣ (𝑋 = 𝑦 ∧ ∀𝑥𝑋𝑛𝐽 (𝑥𝑛 ∧ {𝑠𝑦 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin))} ⊆ 𝒫 𝒫 𝑋
12 islocfin.1 . . . . . . . . 9 𝑋 = 𝐽
1312topopn 20536 . . . . . . . 8 (𝐽 ∈ Top → 𝑋𝐽)
14 pwexg 4776 . . . . . . . 8 (𝑋𝐽 → 𝒫 𝑋 ∈ V)
15 pwexg 4776 . . . . . . . 8 (𝒫 𝑋 ∈ V → 𝒫 𝒫 𝑋 ∈ V)
1613, 14, 153syl 18 . . . . . . 7 (𝐽 ∈ Top → 𝒫 𝒫 𝑋 ∈ V)
17 ssexg 4732 . . . . . . 7 (({𝑦 ∣ (𝑋 = 𝑦 ∧ ∀𝑥𝑋𝑛𝐽 (𝑥𝑛 ∧ {𝑠𝑦 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin))} ⊆ 𝒫 𝒫 𝑋 ∧ 𝒫 𝒫 𝑋 ∈ V) → {𝑦 ∣ (𝑋 = 𝑦 ∧ ∀𝑥𝑋𝑛𝐽 (𝑥𝑛 ∧ {𝑠𝑦 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin))} ∈ V)
1811, 16, 17sylancr 694 . . . . . 6 (𝐽 ∈ Top → {𝑦 ∣ (𝑋 = 𝑦 ∧ ∀𝑥𝑋𝑛𝐽 (𝑥𝑛 ∧ {𝑠𝑦 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin))} ∈ V)
19 unieq 4380 . . . . . . . . . . 11 (𝑗 = 𝐽 𝑗 = 𝐽)
2019, 12syl6eqr 2662 . . . . . . . . . 10 (𝑗 = 𝐽 𝑗 = 𝑋)
2120eqeq1d 2612 . . . . . . . . 9 (𝑗 = 𝐽 → ( 𝑗 = 𝑦𝑋 = 𝑦))
22 rexeq 3116 . . . . . . . . . 10 (𝑗 = 𝐽 → (∃𝑛𝑗 (𝑥𝑛 ∧ {𝑠𝑦 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin) ↔ ∃𝑛𝐽 (𝑥𝑛 ∧ {𝑠𝑦 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin)))
2320, 22raleqbidv 3129 . . . . . . . . 9 (𝑗 = 𝐽 → (∀𝑥 𝑗𝑛𝑗 (𝑥𝑛 ∧ {𝑠𝑦 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin) ↔ ∀𝑥𝑋𝑛𝐽 (𝑥𝑛 ∧ {𝑠𝑦 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin)))
2421, 23anbi12d 743 . . . . . . . 8 (𝑗 = 𝐽 → (( 𝑗 = 𝑦 ∧ ∀𝑥 𝑗𝑛𝑗 (𝑥𝑛 ∧ {𝑠𝑦 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin)) ↔ (𝑋 = 𝑦 ∧ ∀𝑥𝑋𝑛𝐽 (𝑥𝑛 ∧ {𝑠𝑦 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin))))
2524abbidv 2728 . . . . . . 7 (𝑗 = 𝐽 → {𝑦 ∣ ( 𝑗 = 𝑦 ∧ ∀𝑥 𝑗𝑛𝑗 (𝑥𝑛 ∧ {𝑠𝑦 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin))} = {𝑦 ∣ (𝑋 = 𝑦 ∧ ∀𝑥𝑋𝑛𝐽 (𝑥𝑛 ∧ {𝑠𝑦 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin))})
2625, 1fvmptg 6189 . . . . . 6 ((𝐽 ∈ Top ∧ {𝑦 ∣ (𝑋 = 𝑦 ∧ ∀𝑥𝑋𝑛𝐽 (𝑥𝑛 ∧ {𝑠𝑦 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin))} ∈ V) → (LocFin‘𝐽) = {𝑦 ∣ (𝑋 = 𝑦 ∧ ∀𝑥𝑋𝑛𝐽 (𝑥𝑛 ∧ {𝑠𝑦 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin))})
2718, 26mpdan 699 . . . . 5 (𝐽 ∈ Top → (LocFin‘𝐽) = {𝑦 ∣ (𝑋 = 𝑦 ∧ ∀𝑥𝑋𝑛𝐽 (𝑥𝑛 ∧ {𝑠𝑦 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin))})
2827eleq2d 2673 . . . 4 (𝐽 ∈ Top → (𝐴 ∈ (LocFin‘𝐽) ↔ 𝐴 ∈ {𝑦 ∣ (𝑋 = 𝑦 ∧ ∀𝑥𝑋𝑛𝐽 (𝑥𝑛 ∧ {𝑠𝑦 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin))}))
29 elex 3185 . . . . . 6 (𝐴 ∈ {𝑦 ∣ (𝑋 = 𝑦 ∧ ∀𝑥𝑋𝑛𝐽 (𝑥𝑛 ∧ {𝑠𝑦 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin))} → 𝐴 ∈ V)
3029adantl 481 . . . . 5 ((𝐽 ∈ Top ∧ 𝐴 ∈ {𝑦 ∣ (𝑋 = 𝑦 ∧ ∀𝑥𝑋𝑛𝐽 (𝑥𝑛 ∧ {𝑠𝑦 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin))}) → 𝐴 ∈ V)
31 simpr 476 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝑋 = 𝑌) → 𝑋 = 𝑌)
32 islocfin.2 . . . . . . . . . 10 𝑌 = 𝐴
3331, 32syl6eq 2660 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝑋 = 𝑌) → 𝑋 = 𝐴)
3413adantr 480 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝑋 = 𝑌) → 𝑋𝐽)
3533, 34eqeltrrd 2689 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑋 = 𝑌) → 𝐴𝐽)
36 elex 3185 . . . . . . . 8 ( 𝐴𝐽 𝐴 ∈ V)
3735, 36syl 17 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑋 = 𝑌) → 𝐴 ∈ V)
38 uniexb 6866 . . . . . . 7 (𝐴 ∈ V ↔ 𝐴 ∈ V)
3937, 38sylibr 223 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑋 = 𝑌) → 𝐴 ∈ V)
4039adantrr 749 . . . . 5 ((𝐽 ∈ Top ∧ (𝑋 = 𝑌 ∧ ∀𝑥𝑋𝑛𝐽 (𝑥𝑛 ∧ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin))) → 𝐴 ∈ V)
41 unieq 4380 . . . . . . . . 9 (𝑦 = 𝐴 𝑦 = 𝐴)
4241, 32syl6eqr 2662 . . . . . . . 8 (𝑦 = 𝐴 𝑦 = 𝑌)
4342eqeq2d 2620 . . . . . . 7 (𝑦 = 𝐴 → (𝑋 = 𝑦𝑋 = 𝑌))
44 rabeq 3166 . . . . . . . . . . 11 (𝑦 = 𝐴 → {𝑠𝑦 ∣ (𝑠𝑛) ≠ ∅} = {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅})
4544eleq1d 2672 . . . . . . . . . 10 (𝑦 = 𝐴 → ({𝑠𝑦 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin ↔ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin))
4645anbi2d 736 . . . . . . . . 9 (𝑦 = 𝐴 → ((𝑥𝑛 ∧ {𝑠𝑦 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin) ↔ (𝑥𝑛 ∧ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin)))
4746rexbidv 3034 . . . . . . . 8 (𝑦 = 𝐴 → (∃𝑛𝐽 (𝑥𝑛 ∧ {𝑠𝑦 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin) ↔ ∃𝑛𝐽 (𝑥𝑛 ∧ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin)))
4847ralbidv 2969 . . . . . . 7 (𝑦 = 𝐴 → (∀𝑥𝑋𝑛𝐽 (𝑥𝑛 ∧ {𝑠𝑦 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin) ↔ ∀𝑥𝑋𝑛𝐽 (𝑥𝑛 ∧ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin)))
4943, 48anbi12d 743 . . . . . 6 (𝑦 = 𝐴 → ((𝑋 = 𝑦 ∧ ∀𝑥𝑋𝑛𝐽 (𝑥𝑛 ∧ {𝑠𝑦 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin)) ↔ (𝑋 = 𝑌 ∧ ∀𝑥𝑋𝑛𝐽 (𝑥𝑛 ∧ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin))))
5049elabg 3320 . . . . 5 (𝐴 ∈ V → (𝐴 ∈ {𝑦 ∣ (𝑋 = 𝑦 ∧ ∀𝑥𝑋𝑛𝐽 (𝑥𝑛 ∧ {𝑠𝑦 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin))} ↔ (𝑋 = 𝑌 ∧ ∀𝑥𝑋𝑛𝐽 (𝑥𝑛 ∧ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin))))
5130, 40, 50pm5.21nd 939 . . . 4 (𝐽 ∈ Top → (𝐴 ∈ {𝑦 ∣ (𝑋 = 𝑦 ∧ ∀𝑥𝑋𝑛𝐽 (𝑥𝑛 ∧ {𝑠𝑦 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin))} ↔ (𝑋 = 𝑌 ∧ ∀𝑥𝑋𝑛𝐽 (𝑥𝑛 ∧ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin))))
5228, 51bitrd 267 . . 3 (𝐽 ∈ Top → (𝐴 ∈ (LocFin‘𝐽) ↔ (𝑋 = 𝑌 ∧ ∀𝑥𝑋𝑛𝐽 (𝑥𝑛 ∧ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin))))
534, 52biadan2 672 . 2 (𝐴 ∈ (LocFin‘𝐽) ↔ (𝐽 ∈ Top ∧ (𝑋 = 𝑌 ∧ ∀𝑥𝑋𝑛𝐽 (𝑥𝑛 ∧ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin))))
54 3anass 1035 . 2 ((𝐽 ∈ Top ∧ 𝑋 = 𝑌 ∧ ∀𝑥𝑋𝑛𝐽 (𝑥𝑛 ∧ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin)) ↔ (𝐽 ∈ Top ∧ (𝑋 = 𝑌 ∧ ∀𝑥𝑋𝑛𝐽 (𝑥𝑛 ∧ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin))))
5553, 54bitr4i 266 1 (𝐴 ∈ (LocFin‘𝐽) ↔ (𝐽 ∈ Top ∧ 𝑋 = 𝑌 ∧ ∀𝑥𝑋𝑛𝐽 (𝑥𝑛 ∧ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin)))
Colors of variables: wff setvar class
Syntax hints:  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  {cab 2596  wne 2780  wral 2896  wrex 2897  {crab 2900  Vcvv 3173  cin 3539  wss 3540  c0 3874  𝒫 cpw 4108   cuni 4372  dom cdm 5038  cfv 5804  Fincfn 7841  Topctop 20517  LocFinclocfin 21117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fv 5812  df-top 20521  df-locfin 21120
This theorem is referenced by:  finlocfin  21133  locfintop  21134  locfinbas  21135  locfinnei  21136  lfinun  21138  dissnlocfin  21142  locfindis  21143  locfincf  21144  locfinreflem  29235  locfinref  29236
  Copyright terms: Public domain W3C validator