Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > locfinbas | Structured version Visualization version GIF version |
Description: A locally finite cover must cover the base set of its corresponding topological space. (Contributed by Jeff Hankins, 21-Jan-2010.) |
Ref | Expression |
---|---|
locfinbas.1 | ⊢ 𝑋 = ∪ 𝐽 |
locfinbas.2 | ⊢ 𝑌 = ∪ 𝐴 |
Ref | Expression |
---|---|
locfinbas | ⊢ (𝐴 ∈ (LocFin‘𝐽) → 𝑋 = 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | locfinbas.1 | . . 3 ⊢ 𝑋 = ∪ 𝐽 | |
2 | locfinbas.2 | . . 3 ⊢ 𝑌 = ∪ 𝐴 | |
3 | 1, 2 | islocfin 21130 | . 2 ⊢ (𝐴 ∈ (LocFin‘𝐽) ↔ (𝐽 ∈ Top ∧ 𝑋 = 𝑌 ∧ ∀𝑠 ∈ 𝑋 ∃𝑛 ∈ 𝐽 (𝑠 ∈ 𝑛 ∧ {𝑥 ∈ 𝐴 ∣ (𝑥 ∩ 𝑛) ≠ ∅} ∈ Fin))) |
4 | 3 | simp2bi 1070 | 1 ⊢ (𝐴 ∈ (LocFin‘𝐽) → 𝑋 = 𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1475 ∈ wcel 1977 ≠ wne 2780 ∀wral 2896 ∃wrex 2897 {crab 2900 ∩ cin 3539 ∅c0 3874 ∪ cuni 4372 ‘cfv 5804 Fincfn 7841 Topctop 20517 LocFinclocfin 21117 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-sbc 3403 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-iota 5768 df-fun 5806 df-fv 5812 df-top 20521 df-locfin 21120 |
This theorem is referenced by: lfinpfin 21137 lfinun 21138 locfincmp 21139 locfindis 21143 locfincf 21144 |
Copyright terms: Public domain | W3C validator |