MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabun2 Structured version   Visualization version   GIF version

Theorem rabun2 3865
Description: Abstraction restricted to a union. (Contributed by Stefan O'Rear, 5-Feb-2015.)
Assertion
Ref Expression
rabun2 {𝑥 ∈ (𝐴𝐵) ∣ 𝜑} = ({𝑥𝐴𝜑} ∪ {𝑥𝐵𝜑})

Proof of Theorem rabun2
StepHypRef Expression
1 df-rab 2905 . 2 {𝑥 ∈ (𝐴𝐵) ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ (𝐴𝐵) ∧ 𝜑)}
2 df-rab 2905 . . . 4 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
3 df-rab 2905 . . . 4 {𝑥𝐵𝜑} = {𝑥 ∣ (𝑥𝐵𝜑)}
42, 3uneq12i 3727 . . 3 ({𝑥𝐴𝜑} ∪ {𝑥𝐵𝜑}) = ({𝑥 ∣ (𝑥𝐴𝜑)} ∪ {𝑥 ∣ (𝑥𝐵𝜑)})
5 elun 3715 . . . . . . 7 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
65anbi1i 727 . . . . . 6 ((𝑥 ∈ (𝐴𝐵) ∧ 𝜑) ↔ ((𝑥𝐴𝑥𝐵) ∧ 𝜑))
7 andir 908 . . . . . 6 (((𝑥𝐴𝑥𝐵) ∧ 𝜑) ↔ ((𝑥𝐴𝜑) ∨ (𝑥𝐵𝜑)))
86, 7bitri 263 . . . . 5 ((𝑥 ∈ (𝐴𝐵) ∧ 𝜑) ↔ ((𝑥𝐴𝜑) ∨ (𝑥𝐵𝜑)))
98abbii 2726 . . . 4 {𝑥 ∣ (𝑥 ∈ (𝐴𝐵) ∧ 𝜑)} = {𝑥 ∣ ((𝑥𝐴𝜑) ∨ (𝑥𝐵𝜑))}
10 unab 3853 . . . 4 ({𝑥 ∣ (𝑥𝐴𝜑)} ∪ {𝑥 ∣ (𝑥𝐵𝜑)}) = {𝑥 ∣ ((𝑥𝐴𝜑) ∨ (𝑥𝐵𝜑))}
119, 10eqtr4i 2635 . . 3 {𝑥 ∣ (𝑥 ∈ (𝐴𝐵) ∧ 𝜑)} = ({𝑥 ∣ (𝑥𝐴𝜑)} ∪ {𝑥 ∣ (𝑥𝐵𝜑)})
124, 11eqtr4i 2635 . 2 ({𝑥𝐴𝜑} ∪ {𝑥𝐵𝜑}) = {𝑥 ∣ (𝑥 ∈ (𝐴𝐵) ∧ 𝜑)}
131, 12eqtr4i 2635 1 {𝑥 ∈ (𝐴𝐵) ∣ 𝜑} = ({𝑥𝐴𝜑} ∪ {𝑥𝐵𝜑})
Colors of variables: wff setvar class
Syntax hints:  wo 382  wa 383   = wceq 1475  wcel 1977  {cab 2596  {crab 2900  cun 3538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-rab 2905  df-v 3175  df-un 3545
This theorem is referenced by:  fnsuppres  7209  lfinun  21138
  Copyright terms: Public domain W3C validator