Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  lbsacsbs Structured version   Visualization version   GIF version

Theorem lbsacsbs 18977
 Description: Being a basis in a vector space is equivalent to being a basis in the associated algebraic closure system. Equivalent to islbs2 18975. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
lbsacsbs.1 𝐴 = (LSubSp‘𝑊)
lbsacsbs.2 𝑁 = (mrCls‘𝐴)
lbsacsbs.3 𝑋 = (Base‘𝑊)
lbsacsbs.4 𝐼 = (mrInd‘𝐴)
lbsacsbs.5 𝐽 = (LBasis‘𝑊)
Assertion
Ref Expression
lbsacsbs (𝑊 ∈ LVec → (𝑆𝐽 ↔ (𝑆𝐼 ∧ (𝑁𝑆) = 𝑋)))

Proof of Theorem lbsacsbs
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 lbsacsbs.3 . . 3 𝑋 = (Base‘𝑊)
2 lbsacsbs.5 . . 3 𝐽 = (LBasis‘𝑊)
3 eqid 2610 . . 3 (LSpan‘𝑊) = (LSpan‘𝑊)
41, 2, 3islbs2 18975 . 2 (𝑊 ∈ LVec → (𝑆𝐽 ↔ (𝑆𝑋 ∧ ((LSpan‘𝑊)‘𝑆) = 𝑋 ∧ ∀𝑥𝑆 ¬ 𝑥 ∈ ((LSpan‘𝑊)‘(𝑆 ∖ {𝑥})))))
5 lveclmod 18927 . . . . . 6 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
6 lbsacsbs.1 . . . . . . 7 𝐴 = (LSubSp‘𝑊)
7 lbsacsbs.2 . . . . . . 7 𝑁 = (mrCls‘𝐴)
86, 3, 7mrclsp 18810 . . . . . 6 (𝑊 ∈ LMod → (LSpan‘𝑊) = 𝑁)
95, 8syl 17 . . . . 5 (𝑊 ∈ LVec → (LSpan‘𝑊) = 𝑁)
109fveq1d 6105 . . . 4 (𝑊 ∈ LVec → ((LSpan‘𝑊)‘𝑆) = (𝑁𝑆))
1110eqeq1d 2612 . . 3 (𝑊 ∈ LVec → (((LSpan‘𝑊)‘𝑆) = 𝑋 ↔ (𝑁𝑆) = 𝑋))
129fveq1d 6105 . . . . . 6 (𝑊 ∈ LVec → ((LSpan‘𝑊)‘(𝑆 ∖ {𝑥})) = (𝑁‘(𝑆 ∖ {𝑥})))
1312eleq2d 2673 . . . . 5 (𝑊 ∈ LVec → (𝑥 ∈ ((LSpan‘𝑊)‘(𝑆 ∖ {𝑥})) ↔ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))))
1413notbid 307 . . . 4 (𝑊 ∈ LVec → (¬ 𝑥 ∈ ((LSpan‘𝑊)‘(𝑆 ∖ {𝑥})) ↔ ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))))
1514ralbidv 2969 . . 3 (𝑊 ∈ LVec → (∀𝑥𝑆 ¬ 𝑥 ∈ ((LSpan‘𝑊)‘(𝑆 ∖ {𝑥})) ↔ ∀𝑥𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))))
1611, 153anbi23d 1394 . 2 (𝑊 ∈ LVec → ((𝑆𝑋 ∧ ((LSpan‘𝑊)‘𝑆) = 𝑋 ∧ ∀𝑥𝑆 ¬ 𝑥 ∈ ((LSpan‘𝑊)‘(𝑆 ∖ {𝑥}))) ↔ (𝑆𝑋 ∧ (𝑁𝑆) = 𝑋 ∧ ∀𝑥𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})))))
171, 6lssmre 18787 . . . . 5 (𝑊 ∈ LMod → 𝐴 ∈ (Moore‘𝑋))
18 lbsacsbs.4 . . . . . 6 𝐼 = (mrInd‘𝐴)
197, 18ismri 16114 . . . . 5 (𝐴 ∈ (Moore‘𝑋) → (𝑆𝐼 ↔ (𝑆𝑋 ∧ ∀𝑥𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})))))
205, 17, 193syl 18 . . . 4 (𝑊 ∈ LVec → (𝑆𝐼 ↔ (𝑆𝑋 ∧ ∀𝑥𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})))))
2120anbi1d 737 . . 3 (𝑊 ∈ LVec → ((𝑆𝐼 ∧ (𝑁𝑆) = 𝑋) ↔ ((𝑆𝑋 ∧ ∀𝑥𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))) ∧ (𝑁𝑆) = 𝑋)))
22 3anan32 1043 . . 3 ((𝑆𝑋 ∧ (𝑁𝑆) = 𝑋 ∧ ∀𝑥𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))) ↔ ((𝑆𝑋 ∧ ∀𝑥𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))) ∧ (𝑁𝑆) = 𝑋))
2321, 22syl6rbbr 278 . 2 (𝑊 ∈ LVec → ((𝑆𝑋 ∧ (𝑁𝑆) = 𝑋 ∧ ∀𝑥𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))) ↔ (𝑆𝐼 ∧ (𝑁𝑆) = 𝑋)))
244, 16, 233bitrd 293 1 (𝑊 ∈ LVec → (𝑆𝐽 ↔ (𝑆𝐼 ∧ (𝑁𝑆) = 𝑋)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 195   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977  ∀wral 2896   ∖ cdif 3537   ⊆ wss 3540  {csn 4125  ‘cfv 5804  Basecbs 15695  Moorecmre 16065  mrClscmrc 16066  mrIndcmri 16067  LModclmod 18686  LSubSpclss 18753  LSpanclspn 18792  LBasisclbs 18895  LVecclvec 18923 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-tpos 7239  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-0g 15925  df-mre 16069  df-mrc 16070  df-mri 16071  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-minusg 17249  df-sbg 17250  df-mgp 18313  df-ur 18325  df-ring 18372  df-oppr 18446  df-dvdsr 18464  df-unit 18465  df-invr 18495  df-drng 18572  df-lmod 18688  df-lss 18754  df-lsp 18793  df-lbs 18896  df-lvec 18924 This theorem is referenced by:  lvecdim  18978
 Copyright terms: Public domain W3C validator