Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isnumbasgrplem2 Structured version   Visualization version   GIF version

Theorem isnumbasgrplem2 36693
Description: If the (to be thought of as disjoint, although the proof does not require this) union of a set and its Hartogs number supports a group structure (more generally, a cancellative magma), then the set must be numerable. (Contributed by Stefan O'Rear, 9-Jul-2015.)
Assertion
Ref Expression
isnumbasgrplem2 ((𝑆 ∪ (har‘𝑆)) ∈ (Base “ Grp) → 𝑆 ∈ dom card)

Proof of Theorem isnumbasgrplem2
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 basfn 36689 . . 3 Base Fn V
2 ssv 3588 . . 3 Grp ⊆ V
3 fvelimab 6163 . . 3 ((Base Fn V ∧ Grp ⊆ V) → ((𝑆 ∪ (har‘𝑆)) ∈ (Base “ Grp) ↔ ∃𝑥 ∈ Grp (Base‘𝑥) = (𝑆 ∪ (har‘𝑆))))
41, 2, 3mp2an 704 . 2 ((𝑆 ∪ (har‘𝑆)) ∈ (Base “ Grp) ↔ ∃𝑥 ∈ Grp (Base‘𝑥) = (𝑆 ∪ (har‘𝑆)))
5 harcl 8349 . . . . . 6 (har‘𝑆) ∈ On
6 onenon 8658 . . . . . 6 ((har‘𝑆) ∈ On → (har‘𝑆) ∈ dom card)
75, 6ax-mp 5 . . . . 5 (har‘𝑆) ∈ dom card
8 xpnum 8660 . . . . 5 (((har‘𝑆) ∈ dom card ∧ (har‘𝑆) ∈ dom card) → ((har‘𝑆) × (har‘𝑆)) ∈ dom card)
97, 7, 8mp2an 704 . . . 4 ((har‘𝑆) × (har‘𝑆)) ∈ dom card
10 ssun1 3738 . . . . . . . 8 𝑆 ⊆ (𝑆 ∪ (har‘𝑆))
11 simpr 476 . . . . . . . 8 ((𝑥 ∈ Grp ∧ (Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) → (Base‘𝑥) = (𝑆 ∪ (har‘𝑆)))
1210, 11syl5sseqr 3617 . . . . . . 7 ((𝑥 ∈ Grp ∧ (Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) → 𝑆 ⊆ (Base‘𝑥))
13 fvex 6113 . . . . . . . 8 (Base‘𝑥) ∈ V
1413ssex 4730 . . . . . . 7 (𝑆 ⊆ (Base‘𝑥) → 𝑆 ∈ V)
1512, 14syl 17 . . . . . 6 ((𝑥 ∈ Grp ∧ (Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) → 𝑆 ∈ V)
167a1i 11 . . . . . 6 ((𝑥 ∈ Grp ∧ (Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) → (har‘𝑆) ∈ dom card)
17 simp1l 1078 . . . . . . . 8 (((𝑥 ∈ Grp ∧ (Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) ∧ 𝑎𝑆𝑐 ∈ (har‘𝑆)) → 𝑥 ∈ Grp)
18123ad2ant1 1075 . . . . . . . . 9 (((𝑥 ∈ Grp ∧ (Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) ∧ 𝑎𝑆𝑐 ∈ (har‘𝑆)) → 𝑆 ⊆ (Base‘𝑥))
19 simp2 1055 . . . . . . . . 9 (((𝑥 ∈ Grp ∧ (Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) ∧ 𝑎𝑆𝑐 ∈ (har‘𝑆)) → 𝑎𝑆)
2018, 19sseldd 3569 . . . . . . . 8 (((𝑥 ∈ Grp ∧ (Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) ∧ 𝑎𝑆𝑐 ∈ (har‘𝑆)) → 𝑎 ∈ (Base‘𝑥))
21 ssun2 3739 . . . . . . . . . . 11 (har‘𝑆) ⊆ (𝑆 ∪ (har‘𝑆))
2221, 11syl5sseqr 3617 . . . . . . . . . 10 ((𝑥 ∈ Grp ∧ (Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) → (har‘𝑆) ⊆ (Base‘𝑥))
23223ad2ant1 1075 . . . . . . . . 9 (((𝑥 ∈ Grp ∧ (Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) ∧ 𝑎𝑆𝑐 ∈ (har‘𝑆)) → (har‘𝑆) ⊆ (Base‘𝑥))
24 simp3 1056 . . . . . . . . 9 (((𝑥 ∈ Grp ∧ (Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) ∧ 𝑎𝑆𝑐 ∈ (har‘𝑆)) → 𝑐 ∈ (har‘𝑆))
2523, 24sseldd 3569 . . . . . . . 8 (((𝑥 ∈ Grp ∧ (Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) ∧ 𝑎𝑆𝑐 ∈ (har‘𝑆)) → 𝑐 ∈ (Base‘𝑥))
26 eqid 2610 . . . . . . . . 9 (Base‘𝑥) = (Base‘𝑥)
27 eqid 2610 . . . . . . . . 9 (+g𝑥) = (+g𝑥)
2826, 27grpcl 17253 . . . . . . . 8 ((𝑥 ∈ Grp ∧ 𝑎 ∈ (Base‘𝑥) ∧ 𝑐 ∈ (Base‘𝑥)) → (𝑎(+g𝑥)𝑐) ∈ (Base‘𝑥))
2917, 20, 25, 28syl3anc 1318 . . . . . . 7 (((𝑥 ∈ Grp ∧ (Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) ∧ 𝑎𝑆𝑐 ∈ (har‘𝑆)) → (𝑎(+g𝑥)𝑐) ∈ (Base‘𝑥))
30 simp1r 1079 . . . . . . 7 (((𝑥 ∈ Grp ∧ (Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) ∧ 𝑎𝑆𝑐 ∈ (har‘𝑆)) → (Base‘𝑥) = (𝑆 ∪ (har‘𝑆)))
3129, 30eleqtrd 2690 . . . . . 6 (((𝑥 ∈ Grp ∧ (Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) ∧ 𝑎𝑆𝑐 ∈ (har‘𝑆)) → (𝑎(+g𝑥)𝑐) ∈ (𝑆 ∪ (har‘𝑆)))
32 simplll 794 . . . . . . 7 ((((𝑥 ∈ Grp ∧ (Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (har‘𝑆) ∧ 𝑑 ∈ (har‘𝑆))) → 𝑥 ∈ Grp)
3322ad2antrr 758 . . . . . . . 8 ((((𝑥 ∈ Grp ∧ (Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (har‘𝑆) ∧ 𝑑 ∈ (har‘𝑆))) → (har‘𝑆) ⊆ (Base‘𝑥))
34 simprl 790 . . . . . . . 8 ((((𝑥 ∈ Grp ∧ (Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (har‘𝑆) ∧ 𝑑 ∈ (har‘𝑆))) → 𝑐 ∈ (har‘𝑆))
3533, 34sseldd 3569 . . . . . . 7 ((((𝑥 ∈ Grp ∧ (Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (har‘𝑆) ∧ 𝑑 ∈ (har‘𝑆))) → 𝑐 ∈ (Base‘𝑥))
36 simprr 792 . . . . . . . 8 ((((𝑥 ∈ Grp ∧ (Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (har‘𝑆) ∧ 𝑑 ∈ (har‘𝑆))) → 𝑑 ∈ (har‘𝑆))
3733, 36sseldd 3569 . . . . . . 7 ((((𝑥 ∈ Grp ∧ (Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (har‘𝑆) ∧ 𝑑 ∈ (har‘𝑆))) → 𝑑 ∈ (Base‘𝑥))
3812ad2antrr 758 . . . . . . . 8 ((((𝑥 ∈ Grp ∧ (Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (har‘𝑆) ∧ 𝑑 ∈ (har‘𝑆))) → 𝑆 ⊆ (Base‘𝑥))
39 simplr 788 . . . . . . . 8 ((((𝑥 ∈ Grp ∧ (Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (har‘𝑆) ∧ 𝑑 ∈ (har‘𝑆))) → 𝑎𝑆)
4038, 39sseldd 3569 . . . . . . 7 ((((𝑥 ∈ Grp ∧ (Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (har‘𝑆) ∧ 𝑑 ∈ (har‘𝑆))) → 𝑎 ∈ (Base‘𝑥))
4126, 27grplcan 17300 . . . . . . 7 ((𝑥 ∈ Grp ∧ (𝑐 ∈ (Base‘𝑥) ∧ 𝑑 ∈ (Base‘𝑥) ∧ 𝑎 ∈ (Base‘𝑥))) → ((𝑎(+g𝑥)𝑐) = (𝑎(+g𝑥)𝑑) ↔ 𝑐 = 𝑑))
4232, 35, 37, 40, 41syl13anc 1320 . . . . . 6 ((((𝑥 ∈ Grp ∧ (Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) ∧ 𝑎𝑆) ∧ (𝑐 ∈ (har‘𝑆) ∧ 𝑑 ∈ (har‘𝑆))) → ((𝑎(+g𝑥)𝑐) = (𝑎(+g𝑥)𝑑) ↔ 𝑐 = 𝑑))
43 simplll 794 . . . . . . 7 ((((𝑥 ∈ Grp ∧ (Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) ∧ 𝑏 ∈ (har‘𝑆)) ∧ (𝑎𝑆𝑑𝑆)) → 𝑥 ∈ Grp)
4412ad2antrr 758 . . . . . . . 8 ((((𝑥 ∈ Grp ∧ (Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) ∧ 𝑏 ∈ (har‘𝑆)) ∧ (𝑎𝑆𝑑𝑆)) → 𝑆 ⊆ (Base‘𝑥))
45 simprr 792 . . . . . . . 8 ((((𝑥 ∈ Grp ∧ (Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) ∧ 𝑏 ∈ (har‘𝑆)) ∧ (𝑎𝑆𝑑𝑆)) → 𝑑𝑆)
4644, 45sseldd 3569 . . . . . . 7 ((((𝑥 ∈ Grp ∧ (Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) ∧ 𝑏 ∈ (har‘𝑆)) ∧ (𝑎𝑆𝑑𝑆)) → 𝑑 ∈ (Base‘𝑥))
47 simprl 790 . . . . . . . 8 ((((𝑥 ∈ Grp ∧ (Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) ∧ 𝑏 ∈ (har‘𝑆)) ∧ (𝑎𝑆𝑑𝑆)) → 𝑎𝑆)
4844, 47sseldd 3569 . . . . . . 7 ((((𝑥 ∈ Grp ∧ (Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) ∧ 𝑏 ∈ (har‘𝑆)) ∧ (𝑎𝑆𝑑𝑆)) → 𝑎 ∈ (Base‘𝑥))
4922ad2antrr 758 . . . . . . . 8 ((((𝑥 ∈ Grp ∧ (Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) ∧ 𝑏 ∈ (har‘𝑆)) ∧ (𝑎𝑆𝑑𝑆)) → (har‘𝑆) ⊆ (Base‘𝑥))
50 simplr 788 . . . . . . . 8 ((((𝑥 ∈ Grp ∧ (Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) ∧ 𝑏 ∈ (har‘𝑆)) ∧ (𝑎𝑆𝑑𝑆)) → 𝑏 ∈ (har‘𝑆))
5149, 50sseldd 3569 . . . . . . 7 ((((𝑥 ∈ Grp ∧ (Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) ∧ 𝑏 ∈ (har‘𝑆)) ∧ (𝑎𝑆𝑑𝑆)) → 𝑏 ∈ (Base‘𝑥))
5226, 27grprcan 17278 . . . . . . 7 ((𝑥 ∈ Grp ∧ (𝑑 ∈ (Base‘𝑥) ∧ 𝑎 ∈ (Base‘𝑥) ∧ 𝑏 ∈ (Base‘𝑥))) → ((𝑑(+g𝑥)𝑏) = (𝑎(+g𝑥)𝑏) ↔ 𝑑 = 𝑎))
5343, 46, 48, 51, 52syl13anc 1320 . . . . . 6 ((((𝑥 ∈ Grp ∧ (Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) ∧ 𝑏 ∈ (har‘𝑆)) ∧ (𝑎𝑆𝑑𝑆)) → ((𝑑(+g𝑥)𝑏) = (𝑎(+g𝑥)𝑏) ↔ 𝑑 = 𝑎))
54 harndom 8352 . . . . . . 7 ¬ (har‘𝑆) ≼ 𝑆
5554a1i 11 . . . . . 6 ((𝑥 ∈ Grp ∧ (Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) → ¬ (har‘𝑆) ≼ 𝑆)
5615, 16, 16, 31, 42, 53, 55unxpwdom3 36683 . . . . 5 ((𝑥 ∈ Grp ∧ (Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) → 𝑆* ((har‘𝑆) × (har‘𝑆)))
57 wdomnumr 8770 . . . . . 6 (((har‘𝑆) × (har‘𝑆)) ∈ dom card → (𝑆* ((har‘𝑆) × (har‘𝑆)) ↔ 𝑆 ≼ ((har‘𝑆) × (har‘𝑆))))
589, 57ax-mp 5 . . . . 5 (𝑆* ((har‘𝑆) × (har‘𝑆)) ↔ 𝑆 ≼ ((har‘𝑆) × (har‘𝑆)))
5956, 58sylib 207 . . . 4 ((𝑥 ∈ Grp ∧ (Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) → 𝑆 ≼ ((har‘𝑆) × (har‘𝑆)))
60 numdom 8744 . . . 4 ((((har‘𝑆) × (har‘𝑆)) ∈ dom card ∧ 𝑆 ≼ ((har‘𝑆) × (har‘𝑆))) → 𝑆 ∈ dom card)
619, 59, 60sylancr 694 . . 3 ((𝑥 ∈ Grp ∧ (Base‘𝑥) = (𝑆 ∪ (har‘𝑆))) → 𝑆 ∈ dom card)
6261rexlimiva 3010 . 2 (∃𝑥 ∈ Grp (Base‘𝑥) = (𝑆 ∪ (har‘𝑆)) → 𝑆 ∈ dom card)
634, 62sylbi 206 1 ((𝑆 ∪ (har‘𝑆)) ∈ (Base “ Grp) → 𝑆 ∈ dom card)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wrex 2897  Vcvv 3173  cun 3538  wss 3540   class class class wbr 4583   × cxp 5036  dom cdm 5038  cima 5041  Oncon0 5640   Fn wfn 5799  cfv 5804  (class class class)co 6549  cdom 7839  harchar 8344  * cwdom 8345  cardccrd 8644  Basecbs 15695  +gcplusg 15768  Grpcgrp 17245
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-omul 7452  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-oi 8298  df-har 8346  df-wdom 8347  df-card 8648  df-acn 8651  df-slot 15699  df-base 15700  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-minusg 17249
This theorem is referenced by:  isnumbasabl  36695  isnumbasgrp  36696
  Copyright terms: Public domain W3C validator