Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islmodfg Structured version   Visualization version   GIF version

Theorem islmodfg 36657
Description: Property of a finitely generated left module. (Contributed by Stefan O'Rear, 1-Jan-2015.)
Hypotheses
Ref Expression
islmodfg.b 𝐵 = (Base‘𝑊)
islmodfg.n 𝑁 = (LSpan‘𝑊)
Assertion
Ref Expression
islmodfg (𝑊 ∈ LMod → (𝑊 ∈ LFinGen ↔ ∃𝑏 ∈ 𝒫 𝐵(𝑏 ∈ Fin ∧ (𝑁𝑏) = 𝐵)))
Distinct variable groups:   𝑊,𝑏   𝐵,𝑏   𝑁,𝑏

Proof of Theorem islmodfg
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 df-lfig 36656 . . . 4 LFinGen = {𝑎 ∈ LMod ∣ (Base‘𝑎) ∈ ((LSpan‘𝑎) “ (𝒫 (Base‘𝑎) ∩ Fin))}
21eleq2i 2680 . . 3 (𝑊 ∈ LFinGen ↔ 𝑊 ∈ {𝑎 ∈ LMod ∣ (Base‘𝑎) ∈ ((LSpan‘𝑎) “ (𝒫 (Base‘𝑎) ∩ Fin))})
3 fveq2 6103 . . . . 5 (𝑎 = 𝑊 → (Base‘𝑎) = (Base‘𝑊))
4 fveq2 6103 . . . . . . 7 (𝑎 = 𝑊 → (LSpan‘𝑎) = (LSpan‘𝑊))
5 islmodfg.n . . . . . . 7 𝑁 = (LSpan‘𝑊)
64, 5syl6eqr 2662 . . . . . 6 (𝑎 = 𝑊 → (LSpan‘𝑎) = 𝑁)
73pweqd 4113 . . . . . . 7 (𝑎 = 𝑊 → 𝒫 (Base‘𝑎) = 𝒫 (Base‘𝑊))
87ineq1d 3775 . . . . . 6 (𝑎 = 𝑊 → (𝒫 (Base‘𝑎) ∩ Fin) = (𝒫 (Base‘𝑊) ∩ Fin))
96, 8imaeq12d 5386 . . . . 5 (𝑎 = 𝑊 → ((LSpan‘𝑎) “ (𝒫 (Base‘𝑎) ∩ Fin)) = (𝑁 “ (𝒫 (Base‘𝑊) ∩ Fin)))
103, 9eleq12d 2682 . . . 4 (𝑎 = 𝑊 → ((Base‘𝑎) ∈ ((LSpan‘𝑎) “ (𝒫 (Base‘𝑎) ∩ Fin)) ↔ (Base‘𝑊) ∈ (𝑁 “ (𝒫 (Base‘𝑊) ∩ Fin))))
1110elrab3 3332 . . 3 (𝑊 ∈ LMod → (𝑊 ∈ {𝑎 ∈ LMod ∣ (Base‘𝑎) ∈ ((LSpan‘𝑎) “ (𝒫 (Base‘𝑎) ∩ Fin))} ↔ (Base‘𝑊) ∈ (𝑁 “ (𝒫 (Base‘𝑊) ∩ Fin))))
122, 11syl5bb 271 . 2 (𝑊 ∈ LMod → (𝑊 ∈ LFinGen ↔ (Base‘𝑊) ∈ (𝑁 “ (𝒫 (Base‘𝑊) ∩ Fin))))
13 eqid 2610 . . . . . 6 (Base‘𝑊) = (Base‘𝑊)
14 eqid 2610 . . . . . 6 (LSubSp‘𝑊) = (LSubSp‘𝑊)
1513, 14, 5lspf 18795 . . . . 5 (𝑊 ∈ LMod → 𝑁:𝒫 (Base‘𝑊)⟶(LSubSp‘𝑊))
16 ffn 5958 . . . . 5 (𝑁:𝒫 (Base‘𝑊)⟶(LSubSp‘𝑊) → 𝑁 Fn 𝒫 (Base‘𝑊))
1715, 16syl 17 . . . 4 (𝑊 ∈ LMod → 𝑁 Fn 𝒫 (Base‘𝑊))
18 inss1 3795 . . . 4 (𝒫 (Base‘𝑊) ∩ Fin) ⊆ 𝒫 (Base‘𝑊)
19 fvelimab 6163 . . . 4 ((𝑁 Fn 𝒫 (Base‘𝑊) ∧ (𝒫 (Base‘𝑊) ∩ Fin) ⊆ 𝒫 (Base‘𝑊)) → ((Base‘𝑊) ∈ (𝑁 “ (𝒫 (Base‘𝑊) ∩ Fin)) ↔ ∃𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin)(𝑁𝑏) = (Base‘𝑊)))
2017, 18, 19sylancl 693 . . 3 (𝑊 ∈ LMod → ((Base‘𝑊) ∈ (𝑁 “ (𝒫 (Base‘𝑊) ∩ Fin)) ↔ ∃𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin)(𝑁𝑏) = (Base‘𝑊)))
21 elin 3758 . . . . . . 7 (𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin) ↔ (𝑏 ∈ 𝒫 (Base‘𝑊) ∧ 𝑏 ∈ Fin))
22 islmodfg.b . . . . . . . . . . 11 𝐵 = (Base‘𝑊)
2322eqcomi 2619 . . . . . . . . . 10 (Base‘𝑊) = 𝐵
2423pweqi 4112 . . . . . . . . 9 𝒫 (Base‘𝑊) = 𝒫 𝐵
2524eleq2i 2680 . . . . . . . 8 (𝑏 ∈ 𝒫 (Base‘𝑊) ↔ 𝑏 ∈ 𝒫 𝐵)
2625anbi1i 727 . . . . . . 7 ((𝑏 ∈ 𝒫 (Base‘𝑊) ∧ 𝑏 ∈ Fin) ↔ (𝑏 ∈ 𝒫 𝐵𝑏 ∈ Fin))
2721, 26bitri 263 . . . . . 6 (𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin) ↔ (𝑏 ∈ 𝒫 𝐵𝑏 ∈ Fin))
2823eqeq2i 2622 . . . . . 6 ((𝑁𝑏) = (Base‘𝑊) ↔ (𝑁𝑏) = 𝐵)
2927, 28anbi12i 729 . . . . 5 ((𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin) ∧ (𝑁𝑏) = (Base‘𝑊)) ↔ ((𝑏 ∈ 𝒫 𝐵𝑏 ∈ Fin) ∧ (𝑁𝑏) = 𝐵))
30 anass 679 . . . . 5 (((𝑏 ∈ 𝒫 𝐵𝑏 ∈ Fin) ∧ (𝑁𝑏) = 𝐵) ↔ (𝑏 ∈ 𝒫 𝐵 ∧ (𝑏 ∈ Fin ∧ (𝑁𝑏) = 𝐵)))
3129, 30bitri 263 . . . 4 ((𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin) ∧ (𝑁𝑏) = (Base‘𝑊)) ↔ (𝑏 ∈ 𝒫 𝐵 ∧ (𝑏 ∈ Fin ∧ (𝑁𝑏) = 𝐵)))
3231rexbii2 3021 . . 3 (∃𝑏 ∈ (𝒫 (Base‘𝑊) ∩ Fin)(𝑁𝑏) = (Base‘𝑊) ↔ ∃𝑏 ∈ 𝒫 𝐵(𝑏 ∈ Fin ∧ (𝑁𝑏) = 𝐵))
3320, 32syl6bb 275 . 2 (𝑊 ∈ LMod → ((Base‘𝑊) ∈ (𝑁 “ (𝒫 (Base‘𝑊) ∩ Fin)) ↔ ∃𝑏 ∈ 𝒫 𝐵(𝑏 ∈ Fin ∧ (𝑁𝑏) = 𝐵)))
3412, 33bitrd 267 1 (𝑊 ∈ LMod → (𝑊 ∈ LFinGen ↔ ∃𝑏 ∈ 𝒫 𝐵(𝑏 ∈ Fin ∧ (𝑁𝑏) = 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wrex 2897  {crab 2900  cin 3539  wss 3540  𝒫 cpw 4108  cima 5041   Fn wfn 5799  wf 5800  cfv 5804  Fincfn 7841  Basecbs 15695  LModclmod 18686  LSubSpclss 18753  LSpanclspn 18792  LFinGenclfig 36655
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-plusg 15781  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-minusg 17249  df-sbg 17250  df-mgp 18313  df-ur 18325  df-ring 18372  df-lmod 18688  df-lss 18754  df-lsp 18793  df-lfig 36656
This theorem is referenced by:  islssfg  36658  lnrfg  36708
  Copyright terms: Public domain W3C validator