Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islssfg Structured version   Visualization version   GIF version

Theorem islssfg 36658
Description: Property of a finitely generated left (sub-)module. (Contributed by Stefan O'Rear, 1-Jan-2015.)
Hypotheses
Ref Expression
islssfg.x 𝑋 = (𝑊s 𝑈)
islssfg.s 𝑆 = (LSubSp‘𝑊)
islssfg.n 𝑁 = (LSpan‘𝑊)
Assertion
Ref Expression
islssfg ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑋 ∈ LFinGen ↔ ∃𝑏 ∈ 𝒫 𝑈(𝑏 ∈ Fin ∧ (𝑁𝑏) = 𝑈)))
Distinct variable groups:   𝑊,𝑏   𝑋,𝑏   𝑆,𝑏   𝑈,𝑏   𝑁,𝑏

Proof of Theorem islssfg
StepHypRef Expression
1 eqid 2610 . . . . . . 7 (Base‘𝑊) = (Base‘𝑊)
2 islssfg.s . . . . . . 7 𝑆 = (LSubSp‘𝑊)
31, 2lssss 18758 . . . . . 6 (𝑈𝑆𝑈 ⊆ (Base‘𝑊))
4 islssfg.x . . . . . . 7 𝑋 = (𝑊s 𝑈)
54, 1ressbas2 15758 . . . . . 6 (𝑈 ⊆ (Base‘𝑊) → 𝑈 = (Base‘𝑋))
63, 5syl 17 . . . . 5 (𝑈𝑆𝑈 = (Base‘𝑋))
76pweqd 4113 . . . 4 (𝑈𝑆 → 𝒫 𝑈 = 𝒫 (Base‘𝑋))
87rexeqdv 3122 . . 3 (𝑈𝑆 → (∃𝑏 ∈ 𝒫 𝑈(𝑏 ∈ Fin ∧ ((LSpan‘𝑋)‘𝑏) = (Base‘𝑋)) ↔ ∃𝑏 ∈ 𝒫 (Base‘𝑋)(𝑏 ∈ Fin ∧ ((LSpan‘𝑋)‘𝑏) = (Base‘𝑋))))
98adantl 481 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (∃𝑏 ∈ 𝒫 𝑈(𝑏 ∈ Fin ∧ ((LSpan‘𝑋)‘𝑏) = (Base‘𝑋)) ↔ ∃𝑏 ∈ 𝒫 (Base‘𝑋)(𝑏 ∈ Fin ∧ ((LSpan‘𝑋)‘𝑏) = (Base‘𝑋))))
10 elpwi 4117 . . . . . 6 (𝑏 ∈ 𝒫 𝑈𝑏𝑈)
11 islssfg.n . . . . . . . 8 𝑁 = (LSpan‘𝑊)
12 eqid 2610 . . . . . . . 8 (LSpan‘𝑋) = (LSpan‘𝑋)
134, 11, 12, 2lsslsp 18836 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑈𝑆𝑏𝑈) → (𝑁𝑏) = ((LSpan‘𝑋)‘𝑏))
14133expa 1257 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑏𝑈) → (𝑁𝑏) = ((LSpan‘𝑋)‘𝑏))
1510, 14sylan2 490 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑏 ∈ 𝒫 𝑈) → (𝑁𝑏) = ((LSpan‘𝑋)‘𝑏))
166ad2antlr 759 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑏 ∈ 𝒫 𝑈) → 𝑈 = (Base‘𝑋))
1715, 16eqeq12d 2625 . . . 4 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑏 ∈ 𝒫 𝑈) → ((𝑁𝑏) = 𝑈 ↔ ((LSpan‘𝑋)‘𝑏) = (Base‘𝑋)))
1817anbi2d 736 . . 3 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑏 ∈ 𝒫 𝑈) → ((𝑏 ∈ Fin ∧ (𝑁𝑏) = 𝑈) ↔ (𝑏 ∈ Fin ∧ ((LSpan‘𝑋)‘𝑏) = (Base‘𝑋))))
1918rexbidva 3031 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (∃𝑏 ∈ 𝒫 𝑈(𝑏 ∈ Fin ∧ (𝑁𝑏) = 𝑈) ↔ ∃𝑏 ∈ 𝒫 𝑈(𝑏 ∈ Fin ∧ ((LSpan‘𝑋)‘𝑏) = (Base‘𝑋))))
204, 2lsslmod 18781 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑋 ∈ LMod)
21 eqid 2610 . . . 4 (Base‘𝑋) = (Base‘𝑋)
2221, 12islmodfg 36657 . . 3 (𝑋 ∈ LMod → (𝑋 ∈ LFinGen ↔ ∃𝑏 ∈ 𝒫 (Base‘𝑋)(𝑏 ∈ Fin ∧ ((LSpan‘𝑋)‘𝑏) = (Base‘𝑋))))
2320, 22syl 17 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑋 ∈ LFinGen ↔ ∃𝑏 ∈ 𝒫 (Base‘𝑋)(𝑏 ∈ Fin ∧ ((LSpan‘𝑋)‘𝑏) = (Base‘𝑋))))
249, 19, 233bitr4rd 300 1 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑋 ∈ LFinGen ↔ ∃𝑏 ∈ 𝒫 𝑈(𝑏 ∈ Fin ∧ (𝑁𝑏) = 𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wrex 2897  wss 3540  𝒫 cpw 4108  cfv 5804  (class class class)co 6549  Fincfn 7841  Basecbs 15695  s cress 15696  LModclmod 18686  LSubSpclss 18753  LSpanclspn 18792  LFinGenclfig 36655
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-sca 15784  df-vsca 15785  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-minusg 17249  df-sbg 17250  df-subg 17414  df-mgp 18313  df-ur 18325  df-ring 18372  df-lmod 18688  df-lss 18754  df-lsp 18793  df-lfig 36656
This theorem is referenced by:  islssfg2  36659  lmhmfgsplit  36674
  Copyright terms: Public domain W3C validator