Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  infrenegsup Structured version   Visualization version   GIF version

Theorem infrenegsup 10883
 Description: The infimum of a set of reals 𝐴 is the negative of the supremum of the negatives of its elements. The antecedent ensures that 𝐴 is nonempty and has a lower bound. (Contributed by NM, 14-Jun-2005.) (Revised by AV, 4-Sep-2020.)
Assertion
Ref Expression
infrenegsup ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → inf(𝐴, ℝ, < ) = -sup({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < ))
Distinct variable group:   𝑥,𝐴,𝑦,𝑧

Proof of Theorem infrenegsup
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 infrecl 10882 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → inf(𝐴, ℝ, < ) ∈ ℝ)
21recnd 9947 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → inf(𝐴, ℝ, < ) ∈ ℂ)
32negnegd 10262 . 2 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → --inf(𝐴, ℝ, < ) = inf(𝐴, ℝ, < ))
4 negeq 10152 . . . . . . . . 9 (𝑤 = 𝑧 → -𝑤 = -𝑧)
54cbvmptv 4678 . . . . . . . 8 (𝑤 ∈ ℝ ↦ -𝑤) = (𝑧 ∈ ℝ ↦ -𝑧)
65mptpreima 5545 . . . . . . 7 ((𝑤 ∈ ℝ ↦ -𝑤) “ 𝐴) = {𝑧 ∈ ℝ ∣ -𝑧𝐴}
7 eqid 2610 . . . . . . . . . 10 (𝑤 ∈ ℝ ↦ -𝑤) = (𝑤 ∈ ℝ ↦ -𝑤)
87negiso 10880 . . . . . . . . 9 ((𝑤 ∈ ℝ ↦ -𝑤) Isom < , < (ℝ, ℝ) ∧ (𝑤 ∈ ℝ ↦ -𝑤) = (𝑤 ∈ ℝ ↦ -𝑤))
98simpri 477 . . . . . . . 8 (𝑤 ∈ ℝ ↦ -𝑤) = (𝑤 ∈ ℝ ↦ -𝑤)
109imaeq1i 5382 . . . . . . 7 ((𝑤 ∈ ℝ ↦ -𝑤) “ 𝐴) = ((𝑤 ∈ ℝ ↦ -𝑤) “ 𝐴)
116, 10eqtr3i 2634 . . . . . 6 {𝑧 ∈ ℝ ∣ -𝑧𝐴} = ((𝑤 ∈ ℝ ↦ -𝑤) “ 𝐴)
1211supeq1i 8236 . . . . 5 sup({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < ) = sup(((𝑤 ∈ ℝ ↦ -𝑤) “ 𝐴), ℝ, < )
138simpli 473 . . . . . . . . 9 (𝑤 ∈ ℝ ↦ -𝑤) Isom < , < (ℝ, ℝ)
14 isocnv 6480 . . . . . . . . 9 ((𝑤 ∈ ℝ ↦ -𝑤) Isom < , < (ℝ, ℝ) → (𝑤 ∈ ℝ ↦ -𝑤) Isom < , < (ℝ, ℝ))
1513, 14ax-mp 5 . . . . . . . 8 (𝑤 ∈ ℝ ↦ -𝑤) Isom < , < (ℝ, ℝ)
16 isoeq1 6467 . . . . . . . . 9 ((𝑤 ∈ ℝ ↦ -𝑤) = (𝑤 ∈ ℝ ↦ -𝑤) → ((𝑤 ∈ ℝ ↦ -𝑤) Isom < , < (ℝ, ℝ) ↔ (𝑤 ∈ ℝ ↦ -𝑤) Isom < , < (ℝ, ℝ)))
179, 16ax-mp 5 . . . . . . . 8 ((𝑤 ∈ ℝ ↦ -𝑤) Isom < , < (ℝ, ℝ) ↔ (𝑤 ∈ ℝ ↦ -𝑤) Isom < , < (ℝ, ℝ))
1815, 17mpbi 219 . . . . . . 7 (𝑤 ∈ ℝ ↦ -𝑤) Isom < , < (ℝ, ℝ)
1918a1i 11 . . . . . 6 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → (𝑤 ∈ ℝ ↦ -𝑤) Isom < , < (ℝ, ℝ))
20 simp1 1054 . . . . . 6 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → 𝐴 ⊆ ℝ)
21 infm3 10861 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
22 vex 3176 . . . . . . . . . . . 12 𝑥 ∈ V
23 vex 3176 . . . . . . . . . . . 12 𝑦 ∈ V
2422, 23brcnv 5227 . . . . . . . . . . 11 (𝑥 < 𝑦𝑦 < 𝑥)
2524notbii 309 . . . . . . . . . 10 𝑥 < 𝑦 ↔ ¬ 𝑦 < 𝑥)
2625ralbii 2963 . . . . . . . . 9 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ↔ ∀𝑦𝐴 ¬ 𝑦 < 𝑥)
2723, 22brcnv 5227 . . . . . . . . . . 11 (𝑦 < 𝑥𝑥 < 𝑦)
28 vex 3176 . . . . . . . . . . . . 13 𝑧 ∈ V
2923, 28brcnv 5227 . . . . . . . . . . . 12 (𝑦 < 𝑧𝑧 < 𝑦)
3029rexbii 3023 . . . . . . . . . . 11 (∃𝑧𝐴 𝑦 < 𝑧 ↔ ∃𝑧𝐴 𝑧 < 𝑦)
3127, 30imbi12i 339 . . . . . . . . . 10 ((𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧) ↔ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))
3231ralbii 2963 . . . . . . . . 9 (∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧) ↔ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))
3326, 32anbi12i 729 . . . . . . . 8 ((∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)) ↔ (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
3433rexbii 3023 . . . . . . 7 (∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)) ↔ ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
3521, 34sylibr 223 . . . . . 6 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
36 gtso 9998 . . . . . . 7 < Or ℝ
3736a1i 11 . . . . . 6 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → < Or ℝ)
3819, 20, 35, 37supiso 8264 . . . . 5 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → sup(((𝑤 ∈ ℝ ↦ -𝑤) “ 𝐴), ℝ, < ) = ((𝑤 ∈ ℝ ↦ -𝑤)‘sup(𝐴, ℝ, < )))
3912, 38syl5eq 2656 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → sup({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < ) = ((𝑤 ∈ ℝ ↦ -𝑤)‘sup(𝐴, ℝ, < )))
40 df-inf 8232 . . . . . . . 8 inf(𝐴, ℝ, < ) = sup(𝐴, ℝ, < )
4140eqcomi 2619 . . . . . . 7 sup(𝐴, ℝ, < ) = inf(𝐴, ℝ, < )
4241fveq2i 6106 . . . . . 6 ((𝑤 ∈ ℝ ↦ -𝑤)‘sup(𝐴, ℝ, < )) = ((𝑤 ∈ ℝ ↦ -𝑤)‘inf(𝐴, ℝ, < ))
43 negeq 10152 . . . . . . 7 (𝑤 = inf(𝐴, ℝ, < ) → -𝑤 = -inf(𝐴, ℝ, < ))
44 negex 10158 . . . . . . 7 -inf(𝐴, ℝ, < ) ∈ V
4543, 7, 44fvmpt 6191 . . . . . 6 (inf(𝐴, ℝ, < ) ∈ ℝ → ((𝑤 ∈ ℝ ↦ -𝑤)‘inf(𝐴, ℝ, < )) = -inf(𝐴, ℝ, < ))
4642, 45syl5eq 2656 . . . . 5 (inf(𝐴, ℝ, < ) ∈ ℝ → ((𝑤 ∈ ℝ ↦ -𝑤)‘sup(𝐴, ℝ, < )) = -inf(𝐴, ℝ, < ))
471, 46syl 17 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → ((𝑤 ∈ ℝ ↦ -𝑤)‘sup(𝐴, ℝ, < )) = -inf(𝐴, ℝ, < ))
4839, 47eqtr2d 2645 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → -inf(𝐴, ℝ, < ) = sup({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < ))
4948negeqd 10154 . 2 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → --inf(𝐴, ℝ, < ) = -sup({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < ))
503, 49eqtr3d 2646 1 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → inf(𝐴, ℝ, < ) = -sup({𝑧 ∈ ℝ ∣ -𝑧𝐴}, ℝ, < ))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 195   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  ∀wral 2896  ∃wrex 2897  {crab 2900   ⊆ wss 3540  ∅c0 3874   class class class wbr 4583   ↦ cmpt 4643   Or wor 4958  ◡ccnv 5037   “ cima 5041  ‘cfv 5804   Isom wiso 5805  supcsup 8229  infcinf 8230  ℝcr 9814   < clt 9953   ≤ cle 9954  -cneg 10146 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148 This theorem is referenced by:  supminf  11651  mbfinf  23238
 Copyright terms: Public domain W3C validator