Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  inelcarsg Structured version   Visualization version   GIF version

Theorem inelcarsg 29700
Description: The Caratheodory measurable sets are closed under intersection. (Contributed by Thierry Arnoux, 18-May-2020.)
Hypotheses
Ref Expression
carsgval.1 (𝜑𝑂𝑉)
carsgval.2 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
difelcarsg.1 (𝜑𝐴 ∈ (toCaraSiga‘𝑀))
inelcarsg.1 ((𝜑𝑎 ∈ 𝒫 𝑂𝑏 ∈ 𝒫 𝑂) → (𝑀‘(𝑎𝑏)) ≤ ((𝑀𝑎) +𝑒 (𝑀𝑏)))
inelcarsg.2 (𝜑𝐵 ∈ (toCaraSiga‘𝑀))
Assertion
Ref Expression
inelcarsg (𝜑 → (𝐴𝐵) ∈ (toCaraSiga‘𝑀))
Distinct variable groups:   𝑀,𝑎   𝑂,𝑎   𝜑,𝑎   𝐴,𝑎,𝑏   𝐵,𝑎,𝑏   𝑀,𝑏   𝑂,𝑏   𝜑,𝑏
Allowed substitution hints:   𝑉(𝑎,𝑏)

Proof of Theorem inelcarsg
Dummy variables 𝑒 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 difelcarsg.1 . . . . . 6 (𝜑𝐴 ∈ (toCaraSiga‘𝑀))
2 carsgval.1 . . . . . . 7 (𝜑𝑂𝑉)
3 carsgval.2 . . . . . . 7 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
42, 3elcarsg 29694 . . . . . 6 (𝜑 → (𝐴 ∈ (toCaraSiga‘𝑀) ↔ (𝐴𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒𝐴)) +𝑒 (𝑀‘(𝑒𝐴))) = (𝑀𝑒))))
51, 4mpbid 221 . . . . 5 (𝜑 → (𝐴𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒𝐴)) +𝑒 (𝑀‘(𝑒𝐴))) = (𝑀𝑒)))
65simpld 474 . . . 4 (𝜑𝐴𝑂)
7 ssinss1 3803 . . . 4 (𝐴𝑂 → (𝐴𝐵) ⊆ 𝑂)
86, 7syl 17 . . 3 (𝜑 → (𝐴𝐵) ⊆ 𝑂)
9 iccssxr 12127 . . . . . . . . 9 (0[,]+∞) ⊆ ℝ*
103adantr 480 . . . . . . . . . 10 ((𝜑𝑒 ∈ 𝒫 𝑂) → 𝑀:𝒫 𝑂⟶(0[,]+∞))
11 simpr 476 . . . . . . . . . . 11 ((𝜑𝑒 ∈ 𝒫 𝑂) → 𝑒 ∈ 𝒫 𝑂)
1211elpwdifcl 28742 . . . . . . . . . 10 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑒 ∖ (𝐴𝐵)) ∈ 𝒫 𝑂)
1310, 12ffvelrnd 6268 . . . . . . . . 9 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀‘(𝑒 ∖ (𝐴𝐵))) ∈ (0[,]+∞))
149, 13sseldi 3566 . . . . . . . 8 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀‘(𝑒 ∖ (𝐴𝐵))) ∈ ℝ*)
1511elpwincl1 28741 . . . . . . . . . . . 12 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑒𝐴) ∈ 𝒫 𝑂)
1615elpwdifcl 28742 . . . . . . . . . . 11 ((𝜑𝑒 ∈ 𝒫 𝑂) → ((𝑒𝐴) ∖ 𝐵) ∈ 𝒫 𝑂)
1710, 16ffvelrnd 6268 . . . . . . . . . 10 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀‘((𝑒𝐴) ∖ 𝐵)) ∈ (0[,]+∞))
189, 17sseldi 3566 . . . . . . . . 9 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀‘((𝑒𝐴) ∖ 𝐵)) ∈ ℝ*)
1911elpwdifcl 28742 . . . . . . . . . . 11 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑒𝐴) ∈ 𝒫 𝑂)
2010, 19ffvelrnd 6268 . . . . . . . . . 10 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀‘(𝑒𝐴)) ∈ (0[,]+∞))
219, 20sseldi 3566 . . . . . . . . 9 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀‘(𝑒𝐴)) ∈ ℝ*)
2218, 21xaddcld 12003 . . . . . . . 8 ((𝜑𝑒 ∈ 𝒫 𝑂) → ((𝑀‘((𝑒𝐴) ∖ 𝐵)) +𝑒 (𝑀‘(𝑒𝐴))) ∈ ℝ*)
2311elpwincl1 28741 . . . . . . . . . 10 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑒 ∩ (𝐴𝐵)) ∈ 𝒫 𝑂)
2410, 23ffvelrnd 6268 . . . . . . . . 9 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀‘(𝑒 ∩ (𝐴𝐵))) ∈ (0[,]+∞))
259, 24sseldi 3566 . . . . . . . 8 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀‘(𝑒 ∩ (𝐴𝐵))) ∈ ℝ*)
26 indifundif 28740 . . . . . . . . . 10 (((𝑒𝐴) ∖ 𝐵) ∪ (𝑒𝐴)) = (𝑒 ∖ (𝐴𝐵))
2726fveq2i 6106 . . . . . . . . 9 (𝑀‘(((𝑒𝐴) ∖ 𝐵) ∪ (𝑒𝐴))) = (𝑀‘(𝑒 ∖ (𝐴𝐵)))
28 inelcarsg.1 . . . . . . . . . . . . 13 ((𝜑𝑎 ∈ 𝒫 𝑂𝑏 ∈ 𝒫 𝑂) → (𝑀‘(𝑎𝑏)) ≤ ((𝑀𝑎) +𝑒 (𝑀𝑏)))
29283expb 1258 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ 𝒫 𝑂𝑏 ∈ 𝒫 𝑂)) → (𝑀‘(𝑎𝑏)) ≤ ((𝑀𝑎) +𝑒 (𝑀𝑏)))
3029ralrimivva 2954 . . . . . . . . . . 11 (𝜑 → ∀𝑎 ∈ 𝒫 𝑂𝑏 ∈ 𝒫 𝑂(𝑀‘(𝑎𝑏)) ≤ ((𝑀𝑎) +𝑒 (𝑀𝑏)))
3130adantr 480 . . . . . . . . . 10 ((𝜑𝑒 ∈ 𝒫 𝑂) → ∀𝑎 ∈ 𝒫 𝑂𝑏 ∈ 𝒫 𝑂(𝑀‘(𝑎𝑏)) ≤ ((𝑀𝑎) +𝑒 (𝑀𝑏)))
32 uneq1 3722 . . . . . . . . . . . . . 14 (𝑎 = ((𝑒𝐴) ∖ 𝐵) → (𝑎𝑏) = (((𝑒𝐴) ∖ 𝐵) ∪ 𝑏))
3332fveq2d 6107 . . . . . . . . . . . . 13 (𝑎 = ((𝑒𝐴) ∖ 𝐵) → (𝑀‘(𝑎𝑏)) = (𝑀‘(((𝑒𝐴) ∖ 𝐵) ∪ 𝑏)))
34 fveq2 6103 . . . . . . . . . . . . . 14 (𝑎 = ((𝑒𝐴) ∖ 𝐵) → (𝑀𝑎) = (𝑀‘((𝑒𝐴) ∖ 𝐵)))
3534oveq1d 6564 . . . . . . . . . . . . 13 (𝑎 = ((𝑒𝐴) ∖ 𝐵) → ((𝑀𝑎) +𝑒 (𝑀𝑏)) = ((𝑀‘((𝑒𝐴) ∖ 𝐵)) +𝑒 (𝑀𝑏)))
3633, 35breq12d 4596 . . . . . . . . . . . 12 (𝑎 = ((𝑒𝐴) ∖ 𝐵) → ((𝑀‘(𝑎𝑏)) ≤ ((𝑀𝑎) +𝑒 (𝑀𝑏)) ↔ (𝑀‘(((𝑒𝐴) ∖ 𝐵) ∪ 𝑏)) ≤ ((𝑀‘((𝑒𝐴) ∖ 𝐵)) +𝑒 (𝑀𝑏))))
37 uneq2 3723 . . . . . . . . . . . . . 14 (𝑏 = (𝑒𝐴) → (((𝑒𝐴) ∖ 𝐵) ∪ 𝑏) = (((𝑒𝐴) ∖ 𝐵) ∪ (𝑒𝐴)))
3837fveq2d 6107 . . . . . . . . . . . . 13 (𝑏 = (𝑒𝐴) → (𝑀‘(((𝑒𝐴) ∖ 𝐵) ∪ 𝑏)) = (𝑀‘(((𝑒𝐴) ∖ 𝐵) ∪ (𝑒𝐴))))
39 fveq2 6103 . . . . . . . . . . . . . 14 (𝑏 = (𝑒𝐴) → (𝑀𝑏) = (𝑀‘(𝑒𝐴)))
4039oveq2d 6565 . . . . . . . . . . . . 13 (𝑏 = (𝑒𝐴) → ((𝑀‘((𝑒𝐴) ∖ 𝐵)) +𝑒 (𝑀𝑏)) = ((𝑀‘((𝑒𝐴) ∖ 𝐵)) +𝑒 (𝑀‘(𝑒𝐴))))
4138, 40breq12d 4596 . . . . . . . . . . . 12 (𝑏 = (𝑒𝐴) → ((𝑀‘(((𝑒𝐴) ∖ 𝐵) ∪ 𝑏)) ≤ ((𝑀‘((𝑒𝐴) ∖ 𝐵)) +𝑒 (𝑀𝑏)) ↔ (𝑀‘(((𝑒𝐴) ∖ 𝐵) ∪ (𝑒𝐴))) ≤ ((𝑀‘((𝑒𝐴) ∖ 𝐵)) +𝑒 (𝑀‘(𝑒𝐴)))))
4236, 41rspc2v 3293 . . . . . . . . . . 11 ((((𝑒𝐴) ∖ 𝐵) ∈ 𝒫 𝑂 ∧ (𝑒𝐴) ∈ 𝒫 𝑂) → (∀𝑎 ∈ 𝒫 𝑂𝑏 ∈ 𝒫 𝑂(𝑀‘(𝑎𝑏)) ≤ ((𝑀𝑎) +𝑒 (𝑀𝑏)) → (𝑀‘(((𝑒𝐴) ∖ 𝐵) ∪ (𝑒𝐴))) ≤ ((𝑀‘((𝑒𝐴) ∖ 𝐵)) +𝑒 (𝑀‘(𝑒𝐴)))))
4342imp 444 . . . . . . . . . 10 (((((𝑒𝐴) ∖ 𝐵) ∈ 𝒫 𝑂 ∧ (𝑒𝐴) ∈ 𝒫 𝑂) ∧ ∀𝑎 ∈ 𝒫 𝑂𝑏 ∈ 𝒫 𝑂(𝑀‘(𝑎𝑏)) ≤ ((𝑀𝑎) +𝑒 (𝑀𝑏))) → (𝑀‘(((𝑒𝐴) ∖ 𝐵) ∪ (𝑒𝐴))) ≤ ((𝑀‘((𝑒𝐴) ∖ 𝐵)) +𝑒 (𝑀‘(𝑒𝐴))))
4416, 19, 31, 43syl21anc 1317 . . . . . . . . 9 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀‘(((𝑒𝐴) ∖ 𝐵) ∪ (𝑒𝐴))) ≤ ((𝑀‘((𝑒𝐴) ∖ 𝐵)) +𝑒 (𝑀‘(𝑒𝐴))))
4527, 44syl5eqbrr 4619 . . . . . . . 8 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀‘(𝑒 ∖ (𝐴𝐵))) ≤ ((𝑀‘((𝑒𝐴) ∖ 𝐵)) +𝑒 (𝑀‘(𝑒𝐴))))
46 xleadd2a 11956 . . . . . . . 8 ((((𝑀‘(𝑒 ∖ (𝐴𝐵))) ∈ ℝ* ∧ ((𝑀‘((𝑒𝐴) ∖ 𝐵)) +𝑒 (𝑀‘(𝑒𝐴))) ∈ ℝ* ∧ (𝑀‘(𝑒 ∩ (𝐴𝐵))) ∈ ℝ*) ∧ (𝑀‘(𝑒 ∖ (𝐴𝐵))) ≤ ((𝑀‘((𝑒𝐴) ∖ 𝐵)) +𝑒 (𝑀‘(𝑒𝐴)))) → ((𝑀‘(𝑒 ∩ (𝐴𝐵))) +𝑒 (𝑀‘(𝑒 ∖ (𝐴𝐵)))) ≤ ((𝑀‘(𝑒 ∩ (𝐴𝐵))) +𝑒 ((𝑀‘((𝑒𝐴) ∖ 𝐵)) +𝑒 (𝑀‘(𝑒𝐴)))))
4714, 22, 25, 45, 46syl31anc 1321 . . . . . . 7 ((𝜑𝑒 ∈ 𝒫 𝑂) → ((𝑀‘(𝑒 ∩ (𝐴𝐵))) +𝑒 (𝑀‘(𝑒 ∖ (𝐴𝐵)))) ≤ ((𝑀‘(𝑒 ∩ (𝐴𝐵))) +𝑒 ((𝑀‘((𝑒𝐴) ∖ 𝐵)) +𝑒 (𝑀‘(𝑒𝐴)))))
48 inelcarsg.2 . . . . . . . . . . . . 13 (𝜑𝐵 ∈ (toCaraSiga‘𝑀))
492, 3elcarsg 29694 . . . . . . . . . . . . 13 (𝜑 → (𝐵 ∈ (toCaraSiga‘𝑀) ↔ (𝐵𝑂 ∧ ∀𝑓 ∈ 𝒫 𝑂((𝑀‘(𝑓𝐵)) +𝑒 (𝑀‘(𝑓𝐵))) = (𝑀𝑓))))
5048, 49mpbid 221 . . . . . . . . . . . 12 (𝜑 → (𝐵𝑂 ∧ ∀𝑓 ∈ 𝒫 𝑂((𝑀‘(𝑓𝐵)) +𝑒 (𝑀‘(𝑓𝐵))) = (𝑀𝑓)))
5150simprd 478 . . . . . . . . . . 11 (𝜑 → ∀𝑓 ∈ 𝒫 𝑂((𝑀‘(𝑓𝐵)) +𝑒 (𝑀‘(𝑓𝐵))) = (𝑀𝑓))
5251adantr 480 . . . . . . . . . 10 ((𝜑𝑒 ∈ 𝒫 𝑂) → ∀𝑓 ∈ 𝒫 𝑂((𝑀‘(𝑓𝐵)) +𝑒 (𝑀‘(𝑓𝐵))) = (𝑀𝑓))
53 ineq1 3769 . . . . . . . . . . . . . . 15 (𝑓 = (𝑒𝐴) → (𝑓𝐵) = ((𝑒𝐴) ∩ 𝐵))
5453fveq2d 6107 . . . . . . . . . . . . . 14 (𝑓 = (𝑒𝐴) → (𝑀‘(𝑓𝐵)) = (𝑀‘((𝑒𝐴) ∩ 𝐵)))
55 difeq1 3683 . . . . . . . . . . . . . . 15 (𝑓 = (𝑒𝐴) → (𝑓𝐵) = ((𝑒𝐴) ∖ 𝐵))
5655fveq2d 6107 . . . . . . . . . . . . . 14 (𝑓 = (𝑒𝐴) → (𝑀‘(𝑓𝐵)) = (𝑀‘((𝑒𝐴) ∖ 𝐵)))
5754, 56oveq12d 6567 . . . . . . . . . . . . 13 (𝑓 = (𝑒𝐴) → ((𝑀‘(𝑓𝐵)) +𝑒 (𝑀‘(𝑓𝐵))) = ((𝑀‘((𝑒𝐴) ∩ 𝐵)) +𝑒 (𝑀‘((𝑒𝐴) ∖ 𝐵))))
58 fveq2 6103 . . . . . . . . . . . . 13 (𝑓 = (𝑒𝐴) → (𝑀𝑓) = (𝑀‘(𝑒𝐴)))
5957, 58eqeq12d 2625 . . . . . . . . . . . 12 (𝑓 = (𝑒𝐴) → (((𝑀‘(𝑓𝐵)) +𝑒 (𝑀‘(𝑓𝐵))) = (𝑀𝑓) ↔ ((𝑀‘((𝑒𝐴) ∩ 𝐵)) +𝑒 (𝑀‘((𝑒𝐴) ∖ 𝐵))) = (𝑀‘(𝑒𝐴))))
6059adantl 481 . . . . . . . . . . 11 (((𝜑𝑒 ∈ 𝒫 𝑂) ∧ 𝑓 = (𝑒𝐴)) → (((𝑀‘(𝑓𝐵)) +𝑒 (𝑀‘(𝑓𝐵))) = (𝑀𝑓) ↔ ((𝑀‘((𝑒𝐴) ∩ 𝐵)) +𝑒 (𝑀‘((𝑒𝐴) ∖ 𝐵))) = (𝑀‘(𝑒𝐴))))
6115, 60rspcdv 3285 . . . . . . . . . 10 ((𝜑𝑒 ∈ 𝒫 𝑂) → (∀𝑓 ∈ 𝒫 𝑂((𝑀‘(𝑓𝐵)) +𝑒 (𝑀‘(𝑓𝐵))) = (𝑀𝑓) → ((𝑀‘((𝑒𝐴) ∩ 𝐵)) +𝑒 (𝑀‘((𝑒𝐴) ∖ 𝐵))) = (𝑀‘(𝑒𝐴))))
6252, 61mpd 15 . . . . . . . . 9 ((𝜑𝑒 ∈ 𝒫 𝑂) → ((𝑀‘((𝑒𝐴) ∩ 𝐵)) +𝑒 (𝑀‘((𝑒𝐴) ∖ 𝐵))) = (𝑀‘(𝑒𝐴)))
6362oveq1d 6564 . . . . . . . 8 ((𝜑𝑒 ∈ 𝒫 𝑂) → (((𝑀‘((𝑒𝐴) ∩ 𝐵)) +𝑒 (𝑀‘((𝑒𝐴) ∖ 𝐵))) +𝑒 (𝑀‘(𝑒𝐴))) = ((𝑀‘(𝑒𝐴)) +𝑒 (𝑀‘(𝑒𝐴))))
6415elpwincl1 28741 . . . . . . . . . . 11 ((𝜑𝑒 ∈ 𝒫 𝑂) → ((𝑒𝐴) ∩ 𝐵) ∈ 𝒫 𝑂)
6510, 64ffvelrnd 6268 . . . . . . . . . 10 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀‘((𝑒𝐴) ∩ 𝐵)) ∈ (0[,]+∞))
66 xrge0addass 29021 . . . . . . . . . 10 (((𝑀‘((𝑒𝐴) ∩ 𝐵)) ∈ (0[,]+∞) ∧ (𝑀‘((𝑒𝐴) ∖ 𝐵)) ∈ (0[,]+∞) ∧ (𝑀‘(𝑒𝐴)) ∈ (0[,]+∞)) → (((𝑀‘((𝑒𝐴) ∩ 𝐵)) +𝑒 (𝑀‘((𝑒𝐴) ∖ 𝐵))) +𝑒 (𝑀‘(𝑒𝐴))) = ((𝑀‘((𝑒𝐴) ∩ 𝐵)) +𝑒 ((𝑀‘((𝑒𝐴) ∖ 𝐵)) +𝑒 (𝑀‘(𝑒𝐴)))))
6765, 17, 20, 66syl3anc 1318 . . . . . . . . 9 ((𝜑𝑒 ∈ 𝒫 𝑂) → (((𝑀‘((𝑒𝐴) ∩ 𝐵)) +𝑒 (𝑀‘((𝑒𝐴) ∖ 𝐵))) +𝑒 (𝑀‘(𝑒𝐴))) = ((𝑀‘((𝑒𝐴) ∩ 𝐵)) +𝑒 ((𝑀‘((𝑒𝐴) ∖ 𝐵)) +𝑒 (𝑀‘(𝑒𝐴)))))
68 inass 3785 . . . . . . . . . . 11 ((𝑒𝐴) ∩ 𝐵) = (𝑒 ∩ (𝐴𝐵))
6968fveq2i 6106 . . . . . . . . . 10 (𝑀‘((𝑒𝐴) ∩ 𝐵)) = (𝑀‘(𝑒 ∩ (𝐴𝐵)))
7069oveq1i 6559 . . . . . . . . 9 ((𝑀‘((𝑒𝐴) ∩ 𝐵)) +𝑒 ((𝑀‘((𝑒𝐴) ∖ 𝐵)) +𝑒 (𝑀‘(𝑒𝐴)))) = ((𝑀‘(𝑒 ∩ (𝐴𝐵))) +𝑒 ((𝑀‘((𝑒𝐴) ∖ 𝐵)) +𝑒 (𝑀‘(𝑒𝐴))))
7167, 70syl6eq 2660 . . . . . . . 8 ((𝜑𝑒 ∈ 𝒫 𝑂) → (((𝑀‘((𝑒𝐴) ∩ 𝐵)) +𝑒 (𝑀‘((𝑒𝐴) ∖ 𝐵))) +𝑒 (𝑀‘(𝑒𝐴))) = ((𝑀‘(𝑒 ∩ (𝐴𝐵))) +𝑒 ((𝑀‘((𝑒𝐴) ∖ 𝐵)) +𝑒 (𝑀‘(𝑒𝐴)))))
725simprd 478 . . . . . . . . 9 (𝜑 → ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒𝐴)) +𝑒 (𝑀‘(𝑒𝐴))) = (𝑀𝑒))
7372r19.21bi 2916 . . . . . . . 8 ((𝜑𝑒 ∈ 𝒫 𝑂) → ((𝑀‘(𝑒𝐴)) +𝑒 (𝑀‘(𝑒𝐴))) = (𝑀𝑒))
7463, 71, 733eqtr3d 2652 . . . . . . 7 ((𝜑𝑒 ∈ 𝒫 𝑂) → ((𝑀‘(𝑒 ∩ (𝐴𝐵))) +𝑒 ((𝑀‘((𝑒𝐴) ∖ 𝐵)) +𝑒 (𝑀‘(𝑒𝐴)))) = (𝑀𝑒))
7547, 74breqtrd 4609 . . . . . 6 ((𝜑𝑒 ∈ 𝒫 𝑂) → ((𝑀‘(𝑒 ∩ (𝐴𝐵))) +𝑒 (𝑀‘(𝑒 ∖ (𝐴𝐵)))) ≤ (𝑀𝑒))
76 inundif 3998 . . . . . . . 8 ((𝑒 ∩ (𝐴𝐵)) ∪ (𝑒 ∖ (𝐴𝐵))) = 𝑒
7776fveq2i 6106 . . . . . . 7 (𝑀‘((𝑒 ∩ (𝐴𝐵)) ∪ (𝑒 ∖ (𝐴𝐵)))) = (𝑀𝑒)
78 uneq1 3722 . . . . . . . . . . . 12 (𝑎 = (𝑒 ∩ (𝐴𝐵)) → (𝑎𝑏) = ((𝑒 ∩ (𝐴𝐵)) ∪ 𝑏))
7978fveq2d 6107 . . . . . . . . . . 11 (𝑎 = (𝑒 ∩ (𝐴𝐵)) → (𝑀‘(𝑎𝑏)) = (𝑀‘((𝑒 ∩ (𝐴𝐵)) ∪ 𝑏)))
80 fveq2 6103 . . . . . . . . . . . 12 (𝑎 = (𝑒 ∩ (𝐴𝐵)) → (𝑀𝑎) = (𝑀‘(𝑒 ∩ (𝐴𝐵))))
8180oveq1d 6564 . . . . . . . . . . 11 (𝑎 = (𝑒 ∩ (𝐴𝐵)) → ((𝑀𝑎) +𝑒 (𝑀𝑏)) = ((𝑀‘(𝑒 ∩ (𝐴𝐵))) +𝑒 (𝑀𝑏)))
8279, 81breq12d 4596 . . . . . . . . . 10 (𝑎 = (𝑒 ∩ (𝐴𝐵)) → ((𝑀‘(𝑎𝑏)) ≤ ((𝑀𝑎) +𝑒 (𝑀𝑏)) ↔ (𝑀‘((𝑒 ∩ (𝐴𝐵)) ∪ 𝑏)) ≤ ((𝑀‘(𝑒 ∩ (𝐴𝐵))) +𝑒 (𝑀𝑏))))
83 uneq2 3723 . . . . . . . . . . . 12 (𝑏 = (𝑒 ∖ (𝐴𝐵)) → ((𝑒 ∩ (𝐴𝐵)) ∪ 𝑏) = ((𝑒 ∩ (𝐴𝐵)) ∪ (𝑒 ∖ (𝐴𝐵))))
8483fveq2d 6107 . . . . . . . . . . 11 (𝑏 = (𝑒 ∖ (𝐴𝐵)) → (𝑀‘((𝑒 ∩ (𝐴𝐵)) ∪ 𝑏)) = (𝑀‘((𝑒 ∩ (𝐴𝐵)) ∪ (𝑒 ∖ (𝐴𝐵)))))
85 fveq2 6103 . . . . . . . . . . . 12 (𝑏 = (𝑒 ∖ (𝐴𝐵)) → (𝑀𝑏) = (𝑀‘(𝑒 ∖ (𝐴𝐵))))
8685oveq2d 6565 . . . . . . . . . . 11 (𝑏 = (𝑒 ∖ (𝐴𝐵)) → ((𝑀‘(𝑒 ∩ (𝐴𝐵))) +𝑒 (𝑀𝑏)) = ((𝑀‘(𝑒 ∩ (𝐴𝐵))) +𝑒 (𝑀‘(𝑒 ∖ (𝐴𝐵)))))
8784, 86breq12d 4596 . . . . . . . . . 10 (𝑏 = (𝑒 ∖ (𝐴𝐵)) → ((𝑀‘((𝑒 ∩ (𝐴𝐵)) ∪ 𝑏)) ≤ ((𝑀‘(𝑒 ∩ (𝐴𝐵))) +𝑒 (𝑀𝑏)) ↔ (𝑀‘((𝑒 ∩ (𝐴𝐵)) ∪ (𝑒 ∖ (𝐴𝐵)))) ≤ ((𝑀‘(𝑒 ∩ (𝐴𝐵))) +𝑒 (𝑀‘(𝑒 ∖ (𝐴𝐵))))))
8882, 87rspc2v 3293 . . . . . . . . 9 (((𝑒 ∩ (𝐴𝐵)) ∈ 𝒫 𝑂 ∧ (𝑒 ∖ (𝐴𝐵)) ∈ 𝒫 𝑂) → (∀𝑎 ∈ 𝒫 𝑂𝑏 ∈ 𝒫 𝑂(𝑀‘(𝑎𝑏)) ≤ ((𝑀𝑎) +𝑒 (𝑀𝑏)) → (𝑀‘((𝑒 ∩ (𝐴𝐵)) ∪ (𝑒 ∖ (𝐴𝐵)))) ≤ ((𝑀‘(𝑒 ∩ (𝐴𝐵))) +𝑒 (𝑀‘(𝑒 ∖ (𝐴𝐵))))))
8988imp 444 . . . . . . . 8 ((((𝑒 ∩ (𝐴𝐵)) ∈ 𝒫 𝑂 ∧ (𝑒 ∖ (𝐴𝐵)) ∈ 𝒫 𝑂) ∧ ∀𝑎 ∈ 𝒫 𝑂𝑏 ∈ 𝒫 𝑂(𝑀‘(𝑎𝑏)) ≤ ((𝑀𝑎) +𝑒 (𝑀𝑏))) → (𝑀‘((𝑒 ∩ (𝐴𝐵)) ∪ (𝑒 ∖ (𝐴𝐵)))) ≤ ((𝑀‘(𝑒 ∩ (𝐴𝐵))) +𝑒 (𝑀‘(𝑒 ∖ (𝐴𝐵)))))
9023, 12, 31, 89syl21anc 1317 . . . . . . 7 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀‘((𝑒 ∩ (𝐴𝐵)) ∪ (𝑒 ∖ (𝐴𝐵)))) ≤ ((𝑀‘(𝑒 ∩ (𝐴𝐵))) +𝑒 (𝑀‘(𝑒 ∖ (𝐴𝐵)))))
9177, 90syl5eqbrr 4619 . . . . . 6 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀𝑒) ≤ ((𝑀‘(𝑒 ∩ (𝐴𝐵))) +𝑒 (𝑀‘(𝑒 ∖ (𝐴𝐵)))))
9275, 91jca 553 . . . . 5 ((𝜑𝑒 ∈ 𝒫 𝑂) → (((𝑀‘(𝑒 ∩ (𝐴𝐵))) +𝑒 (𝑀‘(𝑒 ∖ (𝐴𝐵)))) ≤ (𝑀𝑒) ∧ (𝑀𝑒) ≤ ((𝑀‘(𝑒 ∩ (𝐴𝐵))) +𝑒 (𝑀‘(𝑒 ∖ (𝐴𝐵))))))
9325, 14xaddcld 12003 . . . . . 6 ((𝜑𝑒 ∈ 𝒫 𝑂) → ((𝑀‘(𝑒 ∩ (𝐴𝐵))) +𝑒 (𝑀‘(𝑒 ∖ (𝐴𝐵)))) ∈ ℝ*)
943ffvelrnda 6267 . . . . . . 7 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀𝑒) ∈ (0[,]+∞))
959, 94sseldi 3566 . . . . . 6 ((𝜑𝑒 ∈ 𝒫 𝑂) → (𝑀𝑒) ∈ ℝ*)
96 xrletri3 11861 . . . . . 6 ((((𝑀‘(𝑒 ∩ (𝐴𝐵))) +𝑒 (𝑀‘(𝑒 ∖ (𝐴𝐵)))) ∈ ℝ* ∧ (𝑀𝑒) ∈ ℝ*) → (((𝑀‘(𝑒 ∩ (𝐴𝐵))) +𝑒 (𝑀‘(𝑒 ∖ (𝐴𝐵)))) = (𝑀𝑒) ↔ (((𝑀‘(𝑒 ∩ (𝐴𝐵))) +𝑒 (𝑀‘(𝑒 ∖ (𝐴𝐵)))) ≤ (𝑀𝑒) ∧ (𝑀𝑒) ≤ ((𝑀‘(𝑒 ∩ (𝐴𝐵))) +𝑒 (𝑀‘(𝑒 ∖ (𝐴𝐵)))))))
9793, 95, 96syl2anc 691 . . . . 5 ((𝜑𝑒 ∈ 𝒫 𝑂) → (((𝑀‘(𝑒 ∩ (𝐴𝐵))) +𝑒 (𝑀‘(𝑒 ∖ (𝐴𝐵)))) = (𝑀𝑒) ↔ (((𝑀‘(𝑒 ∩ (𝐴𝐵))) +𝑒 (𝑀‘(𝑒 ∖ (𝐴𝐵)))) ≤ (𝑀𝑒) ∧ (𝑀𝑒) ≤ ((𝑀‘(𝑒 ∩ (𝐴𝐵))) +𝑒 (𝑀‘(𝑒 ∖ (𝐴𝐵)))))))
9892, 97mpbird 246 . . . 4 ((𝜑𝑒 ∈ 𝒫 𝑂) → ((𝑀‘(𝑒 ∩ (𝐴𝐵))) +𝑒 (𝑀‘(𝑒 ∖ (𝐴𝐵)))) = (𝑀𝑒))
9998ralrimiva 2949 . . 3 (𝜑 → ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 ∩ (𝐴𝐵))) +𝑒 (𝑀‘(𝑒 ∖ (𝐴𝐵)))) = (𝑀𝑒))
1008, 99jca 553 . 2 (𝜑 → ((𝐴𝐵) ⊆ 𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 ∩ (𝐴𝐵))) +𝑒 (𝑀‘(𝑒 ∖ (𝐴𝐵)))) = (𝑀𝑒)))
1012, 3elcarsg 29694 . 2 (𝜑 → ((𝐴𝐵) ∈ (toCaraSiga‘𝑀) ↔ ((𝐴𝐵) ⊆ 𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒 ∩ (𝐴𝐵))) +𝑒 (𝑀‘(𝑒 ∖ (𝐴𝐵)))) = (𝑀𝑒))))
102100, 101mpbird 246 1 (𝜑 → (𝐴𝐵) ∈ (toCaraSiga‘𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  cdif 3537  cun 3538  cin 3539  wss 3540  𝒫 cpw 4108   class class class wbr 4583  wf 5800  cfv 5804  (class class class)co 6549  0cc0 9815  +∞cpnf 9950  *cxr 9952  cle 9954   +𝑒 cxad 11820  [,]cicc 12049  toCaraSigaccarsg 29690
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-xadd 11823  df-icc 12053  df-carsg 29691
This theorem is referenced by:  unelcarsg  29701  difelcarsg2  29702
  Copyright terms: Public domain W3C validator