Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  difelcarsg2 Structured version   Visualization version   GIF version

Theorem difelcarsg2 29702
Description: The Caratheodory-measurable sets are closed under class difference. (Contributed by Thierry Arnoux, 30-May-2020.)
Hypotheses
Ref Expression
carsgval.1 (𝜑𝑂𝑉)
carsgval.2 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
difelcarsg.1 (𝜑𝐴 ∈ (toCaraSiga‘𝑀))
inelcarsg.1 ((𝜑𝑎 ∈ 𝒫 𝑂𝑏 ∈ 𝒫 𝑂) → (𝑀‘(𝑎𝑏)) ≤ ((𝑀𝑎) +𝑒 (𝑀𝑏)))
inelcarsg.2 (𝜑𝐵 ∈ (toCaraSiga‘𝑀))
Assertion
Ref Expression
difelcarsg2 (𝜑 → (𝐴𝐵) ∈ (toCaraSiga‘𝑀))
Distinct variable groups:   𝑀,𝑎   𝑂,𝑎   𝜑,𝑎   𝐴,𝑎,𝑏   𝐵,𝑎,𝑏   𝑀,𝑏   𝑂,𝑏   𝜑,𝑏
Allowed substitution hints:   𝑉(𝑎,𝑏)

Proof of Theorem difelcarsg2
StepHypRef Expression
1 carsgval.1 . . . 4 (𝜑𝑂𝑉)
2 carsgval.2 . . . 4 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
3 difelcarsg.1 . . . 4 (𝜑𝐴 ∈ (toCaraSiga‘𝑀))
41, 2, 3elcarsgss 29698 . . 3 (𝜑𝐴𝑂)
5 difin2 3849 . . 3 (𝐴𝑂 → (𝐴𝐵) = ((𝑂𝐵) ∩ 𝐴))
64, 5syl 17 . 2 (𝜑 → (𝐴𝐵) = ((𝑂𝐵) ∩ 𝐴))
7 inelcarsg.2 . . . 4 (𝜑𝐵 ∈ (toCaraSiga‘𝑀))
81, 2, 7difelcarsg 29699 . . 3 (𝜑 → (𝑂𝐵) ∈ (toCaraSiga‘𝑀))
9 inelcarsg.1 . . 3 ((𝜑𝑎 ∈ 𝒫 𝑂𝑏 ∈ 𝒫 𝑂) → (𝑀‘(𝑎𝑏)) ≤ ((𝑀𝑎) +𝑒 (𝑀𝑏)))
101, 2, 8, 9, 3inelcarsg 29700 . 2 (𝜑 → ((𝑂𝐵) ∩ 𝐴) ∈ (toCaraSiga‘𝑀))
116, 10eqeltrd 2688 1 (𝜑 → (𝐴𝐵) ∈ (toCaraSiga‘𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1031   = wceq 1475  wcel 1977  cdif 3537  cun 3538  cin 3539  wss 3540  𝒫 cpw 4108   class class class wbr 4583  wf 5800  cfv 5804  (class class class)co 6549  0cc0 9815  +∞cpnf 9950  cle 9954   +𝑒 cxad 11820  [,]cicc 12049  toCaraSigaccarsg 29690
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-xadd 11823  df-icc 12053  df-carsg 29691
This theorem is referenced by:  carsgclctunlem3  29709
  Copyright terms: Public domain W3C validator