Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrge0addass Structured version   Visualization version   GIF version

Theorem xrge0addass 29021
Description: Associativity of extended nonnegative real addition. (Contributed by Thierry Arnoux, 8-Jun-2017.)
Assertion
Ref Expression
xrge0addass ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → ((𝐴 +𝑒 𝐵) +𝑒 𝐶) = (𝐴 +𝑒 (𝐵 +𝑒 𝐶)))

Proof of Theorem xrge0addass
StepHypRef Expression
1 iccssxr 12127 . . 3 (0[,]+∞) ⊆ ℝ*
2 simp1 1054 . . 3 ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → 𝐴 ∈ (0[,]+∞))
31, 2sseldi 3566 . 2 ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → 𝐴 ∈ ℝ*)
4 0xr 9965 . . . . . . 7 0 ∈ ℝ*
54a1i 11 . . . . . 6 ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → 0 ∈ ℝ*)
6 pnfxr 9971 . . . . . . 7 +∞ ∈ ℝ*
76a1i 11 . . . . . 6 ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → +∞ ∈ ℝ*)
8 elicc4 12111 . . . . . 6 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*𝐴 ∈ ℝ*) → (𝐴 ∈ (0[,]+∞) ↔ (0 ≤ 𝐴𝐴 ≤ +∞)))
95, 7, 3, 8syl3anc 1318 . . . . 5 ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → (𝐴 ∈ (0[,]+∞) ↔ (0 ≤ 𝐴𝐴 ≤ +∞)))
102, 9mpbid 221 . . . 4 ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → (0 ≤ 𝐴𝐴 ≤ +∞))
1110simpld 474 . . 3 ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → 0 ≤ 𝐴)
12 ge0nemnf 11878 . . 3 ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) → 𝐴 ≠ -∞)
133, 11, 12syl2anc 691 . 2 ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → 𝐴 ≠ -∞)
14 simp2 1055 . . 3 ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → 𝐵 ∈ (0[,]+∞))
151, 14sseldi 3566 . 2 ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → 𝐵 ∈ ℝ*)
16 elicc4 12111 . . . . . 6 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*𝐵 ∈ ℝ*) → (𝐵 ∈ (0[,]+∞) ↔ (0 ≤ 𝐵𝐵 ≤ +∞)))
175, 7, 15, 16syl3anc 1318 . . . . 5 ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → (𝐵 ∈ (0[,]+∞) ↔ (0 ≤ 𝐵𝐵 ≤ +∞)))
1814, 17mpbid 221 . . . 4 ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → (0 ≤ 𝐵𝐵 ≤ +∞))
1918simpld 474 . . 3 ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → 0 ≤ 𝐵)
20 ge0nemnf 11878 . . 3 ((𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵) → 𝐵 ≠ -∞)
2115, 19, 20syl2anc 691 . 2 ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → 𝐵 ≠ -∞)
22 simp3 1056 . . 3 ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → 𝐶 ∈ (0[,]+∞))
231, 22sseldi 3566 . 2 ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → 𝐶 ∈ ℝ*)
24 elicc4 12111 . . . . . 6 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*𝐶 ∈ ℝ*) → (𝐶 ∈ (0[,]+∞) ↔ (0 ≤ 𝐶𝐶 ≤ +∞)))
255, 7, 23, 24syl3anc 1318 . . . . 5 ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → (𝐶 ∈ (0[,]+∞) ↔ (0 ≤ 𝐶𝐶 ≤ +∞)))
2622, 25mpbid 221 . . . 4 ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → (0 ≤ 𝐶𝐶 ≤ +∞))
2726simpld 474 . . 3 ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → 0 ≤ 𝐶)
28 ge0nemnf 11878 . . 3 ((𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶) → 𝐶 ≠ -∞)
2923, 27, 28syl2anc 691 . 2 ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → 𝐶 ≠ -∞)
30 xaddass 11951 . 2 (((𝐴 ∈ ℝ*𝐴 ≠ -∞) ∧ (𝐵 ∈ ℝ*𝐵 ≠ -∞) ∧ (𝐶 ∈ ℝ*𝐶 ≠ -∞)) → ((𝐴 +𝑒 𝐵) +𝑒 𝐶) = (𝐴 +𝑒 (𝐵 +𝑒 𝐶)))
313, 13, 15, 21, 23, 29, 30syl222anc 1334 1 ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → ((𝐴 +𝑒 𝐵) +𝑒 𝐶) = (𝐴 +𝑒 (𝐵 +𝑒 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780   class class class wbr 4583  (class class class)co 6549  0cc0 9815  +∞cpnf 9950  -∞cmnf 9951  *cxr 9952  cle 9954   +𝑒 cxad 11820  [,]cicc 12049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-addass 9880  ax-i2m1 9883  ax-1ne0 9884  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-xadd 11823  df-icc 12053
This theorem is referenced by:  inelcarsg  29700
  Copyright terms: Public domain W3C validator