MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  indpi Structured version   Visualization version   GIF version

Theorem indpi 9608
Description: Principle of Finite Induction on positive integers. (Contributed by NM, 23-Mar-1996.) (New usage is discouraged.)
Hypotheses
Ref Expression
indpi.1 (𝑥 = 1𝑜 → (𝜑𝜓))
indpi.2 (𝑥 = 𝑦 → (𝜑𝜒))
indpi.3 (𝑥 = (𝑦 +N 1𝑜) → (𝜑𝜃))
indpi.4 (𝑥 = 𝐴 → (𝜑𝜏))
indpi.5 𝜓
indpi.6 (𝑦N → (𝜒𝜃))
Assertion
Ref Expression
indpi (𝐴N𝜏)
Distinct variable groups:   𝑥,𝑦   𝑥,𝐴   𝜓,𝑥   𝜒,𝑥   𝜃,𝑥   𝜏,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝜒(𝑦)   𝜃(𝑦)   𝜏(𝑦)   𝐴(𝑦)

Proof of Theorem indpi
StepHypRef Expression
1 1pi 9584 . . . . . . 7 1𝑜N
21elexi 3186 . . . . . 6 1𝑜 ∈ V
32eqvinc 3300 . . . . 5 (1𝑜 = 𝐴 ↔ ∃𝑥(𝑥 = 1𝑜𝑥 = 𝐴))
4 indpi.4 . . . . 5 (𝑥 = 𝐴 → (𝜑𝜏))
5 indpi.5 . . . . . 6 𝜓
6 indpi.1 . . . . . 6 (𝑥 = 1𝑜 → (𝜑𝜓))
75, 6mpbiri 247 . . . . 5 (𝑥 = 1𝑜𝜑)
83, 4, 7gencl 3208 . . . 4 (1𝑜 = 𝐴𝜏)
98eqcoms 2618 . . 3 (𝐴 = 1𝑜𝜏)
109a1i 11 . 2 (𝐴N → (𝐴 = 1𝑜𝜏))
11 pinn 9579 . . . . 5 (𝐴N𝐴 ∈ ω)
12 elni2 9578 . . . . . 6 (𝐴N ↔ (𝐴 ∈ ω ∧ ∅ ∈ 𝐴))
13 nnord 6965 . . . . . . . . 9 (𝐴 ∈ ω → Ord 𝐴)
14 ordsucss 6910 . . . . . . . . 9 (Ord 𝐴 → (∅ ∈ 𝐴 → suc ∅ ⊆ 𝐴))
1513, 14syl 17 . . . . . . . 8 (𝐴 ∈ ω → (∅ ∈ 𝐴 → suc ∅ ⊆ 𝐴))
16 df-1o 7447 . . . . . . . . 9 1𝑜 = suc ∅
1716sseq1i 3592 . . . . . . . 8 (1𝑜𝐴 ↔ suc ∅ ⊆ 𝐴)
1815, 17syl6ibr 241 . . . . . . 7 (𝐴 ∈ ω → (∅ ∈ 𝐴 → 1𝑜𝐴))
1918imp 444 . . . . . 6 ((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) → 1𝑜𝐴)
2012, 19sylbi 206 . . . . 5 (𝐴N → 1𝑜𝐴)
21 1onn 7606 . . . . . 6 1𝑜 ∈ ω
22 eleq1 2676 . . . . . . . . 9 (𝑥 = 1𝑜 → (𝑥N ↔ 1𝑜N))
23 breq2 4587 . . . . . . . . 9 (𝑥 = 1𝑜 → (1𝑜 <N 𝑥 ↔ 1𝑜 <N 1𝑜))
2422, 23anbi12d 743 . . . . . . . 8 (𝑥 = 1𝑜 → ((𝑥N ∧ 1𝑜 <N 𝑥) ↔ (1𝑜N ∧ 1𝑜 <N 1𝑜)))
2524, 6imbi12d 333 . . . . . . 7 (𝑥 = 1𝑜 → (((𝑥N ∧ 1𝑜 <N 𝑥) → 𝜑) ↔ ((1𝑜N ∧ 1𝑜 <N 1𝑜) → 𝜓)))
26 eleq1 2676 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥N𝑦N))
27 breq2 4587 . . . . . . . . 9 (𝑥 = 𝑦 → (1𝑜 <N 𝑥 ↔ 1𝑜 <N 𝑦))
2826, 27anbi12d 743 . . . . . . . 8 (𝑥 = 𝑦 → ((𝑥N ∧ 1𝑜 <N 𝑥) ↔ (𝑦N ∧ 1𝑜 <N 𝑦)))
29 indpi.2 . . . . . . . 8 (𝑥 = 𝑦 → (𝜑𝜒))
3028, 29imbi12d 333 . . . . . . 7 (𝑥 = 𝑦 → (((𝑥N ∧ 1𝑜 <N 𝑥) → 𝜑) ↔ ((𝑦N ∧ 1𝑜 <N 𝑦) → 𝜒)))
31 pinn 9579 . . . . . . . . . . . . . . 15 (𝑥N𝑥 ∈ ω)
32 eleq1 2676 . . . . . . . . . . . . . . . 16 (𝑥 = suc 𝑦 → (𝑥 ∈ ω ↔ suc 𝑦 ∈ ω))
33 peano2b 6973 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ω ↔ suc 𝑦 ∈ ω)
3432, 33syl6bbr 277 . . . . . . . . . . . . . . 15 (𝑥 = suc 𝑦 → (𝑥 ∈ ω ↔ 𝑦 ∈ ω))
3531, 34syl5ib 233 . . . . . . . . . . . . . 14 (𝑥 = suc 𝑦 → (𝑥N𝑦 ∈ ω))
3635adantrd 483 . . . . . . . . . . . . 13 (𝑥 = suc 𝑦 → ((𝑥N ∧ 1𝑜 <N 𝑥) → 𝑦 ∈ ω))
37 ltpiord 9588 . . . . . . . . . . . . . . . 16 ((1𝑜N𝑥N) → (1𝑜 <N 𝑥 ↔ 1𝑜𝑥))
381, 37mpan 702 . . . . . . . . . . . . . . 15 (𝑥N → (1𝑜 <N 𝑥 ↔ 1𝑜𝑥))
3938biimpa 500 . . . . . . . . . . . . . 14 ((𝑥N ∧ 1𝑜 <N 𝑥) → 1𝑜𝑥)
40 eleq2 2677 . . . . . . . . . . . . . . 15 (𝑥 = suc 𝑦 → (1𝑜𝑥 ↔ 1𝑜 ∈ suc 𝑦))
41 elsuci 5708 . . . . . . . . . . . . . . . 16 (1𝑜 ∈ suc 𝑦 → (1𝑜𝑦 ∨ 1𝑜 = 𝑦))
42 ne0i 3880 . . . . . . . . . . . . . . . . 17 (1𝑜𝑦𝑦 ≠ ∅)
43 0lt1o 7471 . . . . . . . . . . . . . . . . . . 19 ∅ ∈ 1𝑜
44 eleq2 2677 . . . . . . . . . . . . . . . . . . 19 (1𝑜 = 𝑦 → (∅ ∈ 1𝑜 ↔ ∅ ∈ 𝑦))
4543, 44mpbii 222 . . . . . . . . . . . . . . . . . 18 (1𝑜 = 𝑦 → ∅ ∈ 𝑦)
46 ne0i 3880 . . . . . . . . . . . . . . . . . 18 (∅ ∈ 𝑦𝑦 ≠ ∅)
4745, 46syl 17 . . . . . . . . . . . . . . . . 17 (1𝑜 = 𝑦𝑦 ≠ ∅)
4842, 47jaoi 393 . . . . . . . . . . . . . . . 16 ((1𝑜𝑦 ∨ 1𝑜 = 𝑦) → 𝑦 ≠ ∅)
4941, 48syl 17 . . . . . . . . . . . . . . 15 (1𝑜 ∈ suc 𝑦𝑦 ≠ ∅)
5040, 49syl6bi 242 . . . . . . . . . . . . . 14 (𝑥 = suc 𝑦 → (1𝑜𝑥𝑦 ≠ ∅))
5139, 50syl5 33 . . . . . . . . . . . . 13 (𝑥 = suc 𝑦 → ((𝑥N ∧ 1𝑜 <N 𝑥) → 𝑦 ≠ ∅))
5236, 51jcad 554 . . . . . . . . . . . 12 (𝑥 = suc 𝑦 → ((𝑥N ∧ 1𝑜 <N 𝑥) → (𝑦 ∈ ω ∧ 𝑦 ≠ ∅)))
53 elni 9577 . . . . . . . . . . . 12 (𝑦N ↔ (𝑦 ∈ ω ∧ 𝑦 ≠ ∅))
5452, 53syl6ibr 241 . . . . . . . . . . 11 (𝑥 = suc 𝑦 → ((𝑥N ∧ 1𝑜 <N 𝑥) → 𝑦N))
55 simpr 476 . . . . . . . . . . . 12 ((𝑥N ∧ 1𝑜 <N 𝑥) → 1𝑜 <N 𝑥)
56 breq2 4587 . . . . . . . . . . . 12 (𝑥 = suc 𝑦 → (1𝑜 <N 𝑥 ↔ 1𝑜 <N suc 𝑦))
5755, 56syl5ib 233 . . . . . . . . . . 11 (𝑥 = suc 𝑦 → ((𝑥N ∧ 1𝑜 <N 𝑥) → 1𝑜 <N suc 𝑦))
5854, 57jcad 554 . . . . . . . . . 10 (𝑥 = suc 𝑦 → ((𝑥N ∧ 1𝑜 <N 𝑥) → (𝑦N ∧ 1𝑜 <N suc 𝑦)))
59 addclpi 9593 . . . . . . . . . . . . . . 15 ((𝑦N ∧ 1𝑜N) → (𝑦 +N 1𝑜) ∈ N)
601, 59mpan2 703 . . . . . . . . . . . . . 14 (𝑦N → (𝑦 +N 1𝑜) ∈ N)
61 addpiord 9585 . . . . . . . . . . . . . . . . . . 19 ((𝑦N ∧ 1𝑜N) → (𝑦 +N 1𝑜) = (𝑦 +𝑜 1𝑜))
621, 61mpan2 703 . . . . . . . . . . . . . . . . . 18 (𝑦N → (𝑦 +N 1𝑜) = (𝑦 +𝑜 1𝑜))
63 pion 9580 . . . . . . . . . . . . . . . . . . 19 (𝑦N𝑦 ∈ On)
64 oa1suc 7498 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ On → (𝑦 +𝑜 1𝑜) = suc 𝑦)
6563, 64syl 17 . . . . . . . . . . . . . . . . . 18 (𝑦N → (𝑦 +𝑜 1𝑜) = suc 𝑦)
6662, 65eqtrd 2644 . . . . . . . . . . . . . . . . 17 (𝑦N → (𝑦 +N 1𝑜) = suc 𝑦)
6766eqeq2d 2620 . . . . . . . . . . . . . . . 16 (𝑦N → (𝑥 = (𝑦 +N 1𝑜) ↔ 𝑥 = suc 𝑦))
6867biimparc 503 . . . . . . . . . . . . . . 15 ((𝑥 = suc 𝑦𝑦N) → 𝑥 = (𝑦 +N 1𝑜))
6968eleq1d 2672 . . . . . . . . . . . . . 14 ((𝑥 = suc 𝑦𝑦N) → (𝑥N ↔ (𝑦 +N 1𝑜) ∈ N))
7060, 69syl5ibr 235 . . . . . . . . . . . . 13 ((𝑥 = suc 𝑦𝑦N) → (𝑦N𝑥N))
7170ex 449 . . . . . . . . . . . 12 (𝑥 = suc 𝑦 → (𝑦N → (𝑦N𝑥N)))
7271pm2.43d 51 . . . . . . . . . . 11 (𝑥 = suc 𝑦 → (𝑦N𝑥N))
7356biimprd 237 . . . . . . . . . . 11 (𝑥 = suc 𝑦 → (1𝑜 <N suc 𝑦 → 1𝑜 <N 𝑥))
7472, 73anim12d 584 . . . . . . . . . 10 (𝑥 = suc 𝑦 → ((𝑦N ∧ 1𝑜 <N suc 𝑦) → (𝑥N ∧ 1𝑜 <N 𝑥)))
7558, 74impbid 201 . . . . . . . . 9 (𝑥 = suc 𝑦 → ((𝑥N ∧ 1𝑜 <N 𝑥) ↔ (𝑦N ∧ 1𝑜 <N suc 𝑦)))
7675imbi1d 330 . . . . . . . 8 (𝑥 = suc 𝑦 → (((𝑥N ∧ 1𝑜 <N 𝑥) → 𝜑) ↔ ((𝑦N ∧ 1𝑜 <N suc 𝑦) → 𝜑)))
77 indpi.3 . . . . . . . . . . . 12 (𝑥 = (𝑦 +N 1𝑜) → (𝜑𝜃))
7867, 77syl6bir 243 . . . . . . . . . . 11 (𝑦N → (𝑥 = suc 𝑦 → (𝜑𝜃)))
7978adantr 480 . . . . . . . . . 10 ((𝑦N ∧ 1𝑜 <N suc 𝑦) → (𝑥 = suc 𝑦 → (𝜑𝜃)))
8079com12 32 . . . . . . . . 9 (𝑥 = suc 𝑦 → ((𝑦N ∧ 1𝑜 <N suc 𝑦) → (𝜑𝜃)))
8180pm5.74d 261 . . . . . . . 8 (𝑥 = suc 𝑦 → (((𝑦N ∧ 1𝑜 <N suc 𝑦) → 𝜑) ↔ ((𝑦N ∧ 1𝑜 <N suc 𝑦) → 𝜃)))
8276, 81bitrd 267 . . . . . . 7 (𝑥 = suc 𝑦 → (((𝑥N ∧ 1𝑜 <N 𝑥) → 𝜑) ↔ ((𝑦N ∧ 1𝑜 <N suc 𝑦) → 𝜃)))
83 eleq1 2676 . . . . . . . . 9 (𝑥 = 𝐴 → (𝑥N𝐴N))
84 breq2 4587 . . . . . . . . 9 (𝑥 = 𝐴 → (1𝑜 <N 𝑥 ↔ 1𝑜 <N 𝐴))
8583, 84anbi12d 743 . . . . . . . 8 (𝑥 = 𝐴 → ((𝑥N ∧ 1𝑜 <N 𝑥) ↔ (𝐴N ∧ 1𝑜 <N 𝐴)))
8685, 4imbi12d 333 . . . . . . 7 (𝑥 = 𝐴 → (((𝑥N ∧ 1𝑜 <N 𝑥) → 𝜑) ↔ ((𝐴N ∧ 1𝑜 <N 𝐴) → 𝜏)))
8752a1i 12 . . . . . . 7 (1𝑜 ∈ ω → ((1𝑜N ∧ 1𝑜 <N 1𝑜) → 𝜓))
88 ltpiord 9588 . . . . . . . . . . . . . . 15 ((1𝑜N𝑦N) → (1𝑜 <N 𝑦 ↔ 1𝑜𝑦))
891, 88mpan 702 . . . . . . . . . . . . . 14 (𝑦N → (1𝑜 <N 𝑦 ↔ 1𝑜𝑦))
9089pm5.32i 667 . . . . . . . . . . . . 13 ((𝑦N ∧ 1𝑜 <N 𝑦) ↔ (𝑦N ∧ 1𝑜𝑦))
9190simplbi2 653 . . . . . . . . . . . 12 (𝑦N → (1𝑜𝑦 → (𝑦N ∧ 1𝑜 <N 𝑦)))
9291imim1d 80 . . . . . . . . . . 11 (𝑦N → (((𝑦N ∧ 1𝑜 <N 𝑦) → 𝜒) → (1𝑜𝑦𝜒)))
93 ltrelpi 9590 . . . . . . . . . . . . . . 15 <N ⊆ (N × N)
9493brel 5090 . . . . . . . . . . . . . 14 (1𝑜 <N suc 𝑦 → (1𝑜N ∧ suc 𝑦N))
95 ltpiord 9588 . . . . . . . . . . . . . 14 ((1𝑜N ∧ suc 𝑦N) → (1𝑜 <N suc 𝑦 ↔ 1𝑜 ∈ suc 𝑦))
9694, 95syl 17 . . . . . . . . . . . . 13 (1𝑜 <N suc 𝑦 → (1𝑜 <N suc 𝑦 ↔ 1𝑜 ∈ suc 𝑦))
9796ibi 255 . . . . . . . . . . . 12 (1𝑜 <N suc 𝑦 → 1𝑜 ∈ suc 𝑦)
982eqvinc 3300 . . . . . . . . . . . . . . 15 (1𝑜 = 𝑦 ↔ ∃𝑥(𝑥 = 1𝑜𝑥 = 𝑦))
9998, 29, 7gencl 3208 . . . . . . . . . . . . . 14 (1𝑜 = 𝑦𝜒)
100 jao 533 . . . . . . . . . . . . . 14 ((1𝑜𝑦𝜒) → ((1𝑜 = 𝑦𝜒) → ((1𝑜𝑦 ∨ 1𝑜 = 𝑦) → 𝜒)))
10199, 100mpi 20 . . . . . . . . . . . . 13 ((1𝑜𝑦𝜒) → ((1𝑜𝑦 ∨ 1𝑜 = 𝑦) → 𝜒))
10241, 101syl5 33 . . . . . . . . . . . 12 ((1𝑜𝑦𝜒) → (1𝑜 ∈ suc 𝑦𝜒))
10397, 102syl5 33 . . . . . . . . . . 11 ((1𝑜𝑦𝜒) → (1𝑜 <N suc 𝑦𝜒))
10492, 103syl6com 36 . . . . . . . . . 10 (((𝑦N ∧ 1𝑜 <N 𝑦) → 𝜒) → (𝑦N → (1𝑜 <N suc 𝑦𝜒)))
105104impd 446 . . . . . . . . 9 (((𝑦N ∧ 1𝑜 <N 𝑦) → 𝜒) → ((𝑦N ∧ 1𝑜 <N suc 𝑦) → 𝜒))
10616sseq1i 3592 . . . . . . . . . . 11 (1𝑜𝑦 ↔ suc ∅ ⊆ 𝑦)
107 0ex 4718 . . . . . . . . . . . 12 ∅ ∈ V
108 sucssel 5736 . . . . . . . . . . . 12 (∅ ∈ V → (suc ∅ ⊆ 𝑦 → ∅ ∈ 𝑦))
109107, 108ax-mp 5 . . . . . . . . . . 11 (suc ∅ ⊆ 𝑦 → ∅ ∈ 𝑦)
110106, 109sylbi 206 . . . . . . . . . 10 (1𝑜𝑦 → ∅ ∈ 𝑦)
111 elni2 9578 . . . . . . . . . . 11 (𝑦N ↔ (𝑦 ∈ ω ∧ ∅ ∈ 𝑦))
112 indpi.6 . . . . . . . . . . 11 (𝑦N → (𝜒𝜃))
113111, 112sylbir 224 . . . . . . . . . 10 ((𝑦 ∈ ω ∧ ∅ ∈ 𝑦) → (𝜒𝜃))
114110, 113sylan2 490 . . . . . . . . 9 ((𝑦 ∈ ω ∧ 1𝑜𝑦) → (𝜒𝜃))
115105, 114syl9r 76 . . . . . . . 8 ((𝑦 ∈ ω ∧ 1𝑜𝑦) → (((𝑦N ∧ 1𝑜 <N 𝑦) → 𝜒) → ((𝑦N ∧ 1𝑜 <N suc 𝑦) → 𝜃)))
116115adantlr 747 . . . . . . 7 (((𝑦 ∈ ω ∧ 1𝑜 ∈ ω) ∧ 1𝑜𝑦) → (((𝑦N ∧ 1𝑜 <N 𝑦) → 𝜒) → ((𝑦N ∧ 1𝑜 <N suc 𝑦) → 𝜃)))
11725, 30, 82, 86, 87, 116findsg 6985 . . . . . 6 (((𝐴 ∈ ω ∧ 1𝑜 ∈ ω) ∧ 1𝑜𝐴) → ((𝐴N ∧ 1𝑜 <N 𝐴) → 𝜏))
11821, 117mpanl2 713 . . . . 5 ((𝐴 ∈ ω ∧ 1𝑜𝐴) → ((𝐴N ∧ 1𝑜 <N 𝐴) → 𝜏))
11911, 20, 118syl2anc 691 . . . 4 (𝐴N → ((𝐴N ∧ 1𝑜 <N 𝐴) → 𝜏))
120119expd 451 . . 3 (𝐴N → (𝐴N → (1𝑜 <N 𝐴𝜏)))
121120pm2.43i 50 . 2 (𝐴N → (1𝑜 <N 𝐴𝜏))
122 nlt1pi 9607 . . . 4 ¬ 𝐴 <N 1𝑜
123 ltsopi 9589 . . . . . 6 <N Or N
124 sotric 4985 . . . . . 6 (( <N Or N ∧ (𝐴N ∧ 1𝑜N)) → (𝐴 <N 1𝑜 ↔ ¬ (𝐴 = 1𝑜 ∨ 1𝑜 <N 𝐴)))
125123, 124mpan 702 . . . . 5 ((𝐴N ∧ 1𝑜N) → (𝐴 <N 1𝑜 ↔ ¬ (𝐴 = 1𝑜 ∨ 1𝑜 <N 𝐴)))
1261, 125mpan2 703 . . . 4 (𝐴N → (𝐴 <N 1𝑜 ↔ ¬ (𝐴 = 1𝑜 ∨ 1𝑜 <N 𝐴)))
127122, 126mtbii 315 . . 3 (𝐴N → ¬ ¬ (𝐴 = 1𝑜 ∨ 1𝑜 <N 𝐴))
128127notnotrd 127 . 2 (𝐴N → (𝐴 = 1𝑜 ∨ 1𝑜 <N 𝐴))
12910, 121, 128mpjaod 395 1 (𝐴N𝜏)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383   = wceq 1475  wcel 1977  wne 2780  Vcvv 3173  wss 3540  c0 3874   class class class wbr 4583   Or wor 4958  Ord word 5639  Oncon0 5640  suc csuc 5642  (class class class)co 6549  ωcom 6957  1𝑜c1o 7440   +𝑜 coa 7444  Ncnpi 9545   +N cpli 9546   <N clti 9548
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-ni 9573  df-pli 9574  df-lti 9576
This theorem is referenced by:  prlem934  9734
  Copyright terms: Public domain W3C validator