MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nlt1pi Structured version   Visualization version   GIF version

Theorem nlt1pi 9607
Description: No positive integer is less than one. (Contributed by NM, 23-Mar-1996.) (New usage is discouraged.)
Assertion
Ref Expression
nlt1pi ¬ 𝐴 <N 1𝑜

Proof of Theorem nlt1pi
StepHypRef Expression
1 elni 9577 . . . 4 (𝐴N ↔ (𝐴 ∈ ω ∧ 𝐴 ≠ ∅))
21simprbi 479 . . 3 (𝐴N𝐴 ≠ ∅)
3 noel 3878 . . . . . 6 ¬ 𝐴 ∈ ∅
4 1pi 9584 . . . . . . . . . 10 1𝑜N
5 ltpiord 9588 . . . . . . . . . 10 ((𝐴N ∧ 1𝑜N) → (𝐴 <N 1𝑜𝐴 ∈ 1𝑜))
64, 5mpan2 703 . . . . . . . . 9 (𝐴N → (𝐴 <N 1𝑜𝐴 ∈ 1𝑜))
7 df-1o 7447 . . . . . . . . . . 11 1𝑜 = suc ∅
87eleq2i 2680 . . . . . . . . . 10 (𝐴 ∈ 1𝑜𝐴 ∈ suc ∅)
9 elsucg 5709 . . . . . . . . . 10 (𝐴N → (𝐴 ∈ suc ∅ ↔ (𝐴 ∈ ∅ ∨ 𝐴 = ∅)))
108, 9syl5bb 271 . . . . . . . . 9 (𝐴N → (𝐴 ∈ 1𝑜 ↔ (𝐴 ∈ ∅ ∨ 𝐴 = ∅)))
116, 10bitrd 267 . . . . . . . 8 (𝐴N → (𝐴 <N 1𝑜 ↔ (𝐴 ∈ ∅ ∨ 𝐴 = ∅)))
1211biimpa 500 . . . . . . 7 ((𝐴N𝐴 <N 1𝑜) → (𝐴 ∈ ∅ ∨ 𝐴 = ∅))
1312ord 391 . . . . . 6 ((𝐴N𝐴 <N 1𝑜) → (¬ 𝐴 ∈ ∅ → 𝐴 = ∅))
143, 13mpi 20 . . . . 5 ((𝐴N𝐴 <N 1𝑜) → 𝐴 = ∅)
1514ex 449 . . . 4 (𝐴N → (𝐴 <N 1𝑜𝐴 = ∅))
1615necon3ad 2795 . . 3 (𝐴N → (𝐴 ≠ ∅ → ¬ 𝐴 <N 1𝑜))
172, 16mpd 15 . 2 (𝐴N → ¬ 𝐴 <N 1𝑜)
18 ltrelpi 9590 . . . . 5 <N ⊆ (N × N)
1918brel 5090 . . . 4 (𝐴 <N 1𝑜 → (𝐴N ∧ 1𝑜N))
2019simpld 474 . . 3 (𝐴 <N 1𝑜𝐴N)
2120con3i 149 . 2 𝐴N → ¬ 𝐴 <N 1𝑜)
2217, 21pm2.61i 175 1 ¬ 𝐴 <N 1𝑜
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 195  wo 382  wa 383   = wceq 1475  wcel 1977  wne 2780  c0 3874   class class class wbr 4583  suc csuc 5642  ωcom 6957  1𝑜c1o 7440  Ncnpi 9545   <N clti 9548
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-tr 4681  df-eprel 4949  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-om 6958  df-1o 7447  df-ni 9573  df-lti 9576
This theorem is referenced by:  indpi  9608  pinq  9628  archnq  9681
  Copyright terms: Public domain W3C validator