Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  hltr Structured version   Visualization version   GIF version

Theorem hltr 25305
 Description: The half-line relation is transitive. Theorem 6.7 of [Schwabhauser] p. 44. (Contributed by Thierry Arnoux, 23-Feb-2020.)
Hypotheses
Ref Expression
ishlg.p 𝑃 = (Base‘𝐺)
ishlg.i 𝐼 = (Itv‘𝐺)
ishlg.k 𝐾 = (hlG‘𝐺)
ishlg.a (𝜑𝐴𝑃)
ishlg.b (𝜑𝐵𝑃)
ishlg.c (𝜑𝐶𝑃)
hlln.1 (𝜑𝐺 ∈ TarskiG)
hltr.d (𝜑𝐷𝑃)
hltr.1 (𝜑𝐴(𝐾𝐷)𝐵)
hltr.2 (𝜑𝐵(𝐾𝐷)𝐶)
Assertion
Ref Expression
hltr (𝜑𝐴(𝐾𝐷)𝐶)

Proof of Theorem hltr
StepHypRef Expression
1 ishlg.p . . . 4 𝑃 = (Base‘𝐺)
2 ishlg.i . . . 4 𝐼 = (Itv‘𝐺)
3 ishlg.k . . . 4 𝐾 = (hlG‘𝐺)
4 ishlg.a . . . 4 (𝜑𝐴𝑃)
5 ishlg.b . . . 4 (𝜑𝐵𝑃)
6 hltr.d . . . 4 (𝜑𝐷𝑃)
7 hlln.1 . . . 4 (𝜑𝐺 ∈ TarskiG)
8 hltr.1 . . . 4 (𝜑𝐴(𝐾𝐷)𝐵)
91, 2, 3, 4, 5, 6, 7, 8hlne1 25300 . . 3 (𝜑𝐴𝐷)
10 ishlg.c . . . 4 (𝜑𝐶𝑃)
11 hltr.2 . . . 4 (𝜑𝐵(𝐾𝐷)𝐶)
121, 2, 3, 5, 10, 6, 7, 11hlne2 25301 . . 3 (𝜑𝐶𝐷)
13 eqid 2610 . . . . . . 7 (dist‘𝐺) = (dist‘𝐺)
147ad2antrr 758 . . . . . . 7 (((𝜑𝐴 ∈ (𝐷𝐼𝐵)) ∧ 𝐵 ∈ (𝐷𝐼𝐶)) → 𝐺 ∈ TarskiG)
156ad2antrr 758 . . . . . . 7 (((𝜑𝐴 ∈ (𝐷𝐼𝐵)) ∧ 𝐵 ∈ (𝐷𝐼𝐶)) → 𝐷𝑃)
164ad2antrr 758 . . . . . . 7 (((𝜑𝐴 ∈ (𝐷𝐼𝐵)) ∧ 𝐵 ∈ (𝐷𝐼𝐶)) → 𝐴𝑃)
175ad2antrr 758 . . . . . . 7 (((𝜑𝐴 ∈ (𝐷𝐼𝐵)) ∧ 𝐵 ∈ (𝐷𝐼𝐶)) → 𝐵𝑃)
1810ad2antrr 758 . . . . . . 7 (((𝜑𝐴 ∈ (𝐷𝐼𝐵)) ∧ 𝐵 ∈ (𝐷𝐼𝐶)) → 𝐶𝑃)
19 simplr 788 . . . . . . 7 (((𝜑𝐴 ∈ (𝐷𝐼𝐵)) ∧ 𝐵 ∈ (𝐷𝐼𝐶)) → 𝐴 ∈ (𝐷𝐼𝐵))
20 simpr 476 . . . . . . 7 (((𝜑𝐴 ∈ (𝐷𝐼𝐵)) ∧ 𝐵 ∈ (𝐷𝐼𝐶)) → 𝐵 ∈ (𝐷𝐼𝐶))
211, 13, 2, 14, 15, 16, 17, 18, 19, 20tgbtwnexch 25193 . . . . . 6 (((𝜑𝐴 ∈ (𝐷𝐼𝐵)) ∧ 𝐵 ∈ (𝐷𝐼𝐶)) → 𝐴 ∈ (𝐷𝐼𝐶))
2221orcd 406 . . . . 5 (((𝜑𝐴 ∈ (𝐷𝐼𝐵)) ∧ 𝐵 ∈ (𝐷𝐼𝐶)) → (𝐴 ∈ (𝐷𝐼𝐶) ∨ 𝐶 ∈ (𝐷𝐼𝐴)))
237ad2antrr 758 . . . . . 6 (((𝜑𝐴 ∈ (𝐷𝐼𝐵)) ∧ 𝐶 ∈ (𝐷𝐼𝐵)) → 𝐺 ∈ TarskiG)
246ad2antrr 758 . . . . . 6 (((𝜑𝐴 ∈ (𝐷𝐼𝐵)) ∧ 𝐶 ∈ (𝐷𝐼𝐵)) → 𝐷𝑃)
254ad2antrr 758 . . . . . 6 (((𝜑𝐴 ∈ (𝐷𝐼𝐵)) ∧ 𝐶 ∈ (𝐷𝐼𝐵)) → 𝐴𝑃)
2610ad2antrr 758 . . . . . 6 (((𝜑𝐴 ∈ (𝐷𝐼𝐵)) ∧ 𝐶 ∈ (𝐷𝐼𝐵)) → 𝐶𝑃)
275ad2antrr 758 . . . . . 6 (((𝜑𝐴 ∈ (𝐷𝐼𝐵)) ∧ 𝐶 ∈ (𝐷𝐼𝐵)) → 𝐵𝑃)
28 simplr 788 . . . . . 6 (((𝜑𝐴 ∈ (𝐷𝐼𝐵)) ∧ 𝐶 ∈ (𝐷𝐼𝐵)) → 𝐴 ∈ (𝐷𝐼𝐵))
29 simpr 476 . . . . . 6 (((𝜑𝐴 ∈ (𝐷𝐼𝐵)) ∧ 𝐶 ∈ (𝐷𝐼𝐵)) → 𝐶 ∈ (𝐷𝐼𝐵))
301, 2, 23, 24, 25, 26, 27, 28, 29tgbtwnconn3 25272 . . . . 5 (((𝜑𝐴 ∈ (𝐷𝐼𝐵)) ∧ 𝐶 ∈ (𝐷𝐼𝐵)) → (𝐴 ∈ (𝐷𝐼𝐶) ∨ 𝐶 ∈ (𝐷𝐼𝐴)))
311, 2, 3, 5, 10, 6, 7ishlg 25297 . . . . . . . 8 (𝜑 → (𝐵(𝐾𝐷)𝐶 ↔ (𝐵𝐷𝐶𝐷 ∧ (𝐵 ∈ (𝐷𝐼𝐶) ∨ 𝐶 ∈ (𝐷𝐼𝐵)))))
3211, 31mpbid 221 . . . . . . 7 (𝜑 → (𝐵𝐷𝐶𝐷 ∧ (𝐵 ∈ (𝐷𝐼𝐶) ∨ 𝐶 ∈ (𝐷𝐼𝐵))))
3332simp3d 1068 . . . . . 6 (𝜑 → (𝐵 ∈ (𝐷𝐼𝐶) ∨ 𝐶 ∈ (𝐷𝐼𝐵)))
3433adantr 480 . . . . 5 ((𝜑𝐴 ∈ (𝐷𝐼𝐵)) → (𝐵 ∈ (𝐷𝐼𝐶) ∨ 𝐶 ∈ (𝐷𝐼𝐵)))
3522, 30, 34mpjaodan 823 . . . 4 ((𝜑𝐴 ∈ (𝐷𝐼𝐵)) → (𝐴 ∈ (𝐷𝐼𝐶) ∨ 𝐶 ∈ (𝐷𝐼𝐴)))
367ad2antrr 758 . . . . . 6 (((𝜑𝐵 ∈ (𝐷𝐼𝐴)) ∧ 𝐵 ∈ (𝐷𝐼𝐶)) → 𝐺 ∈ TarskiG)
376ad2antrr 758 . . . . . 6 (((𝜑𝐵 ∈ (𝐷𝐼𝐴)) ∧ 𝐵 ∈ (𝐷𝐼𝐶)) → 𝐷𝑃)
385ad2antrr 758 . . . . . 6 (((𝜑𝐵 ∈ (𝐷𝐼𝐴)) ∧ 𝐵 ∈ (𝐷𝐼𝐶)) → 𝐵𝑃)
394ad2antrr 758 . . . . . 6 (((𝜑𝐵 ∈ (𝐷𝐼𝐴)) ∧ 𝐵 ∈ (𝐷𝐼𝐶)) → 𝐴𝑃)
4010ad2antrr 758 . . . . . 6 (((𝜑𝐵 ∈ (𝐷𝐼𝐴)) ∧ 𝐵 ∈ (𝐷𝐼𝐶)) → 𝐶𝑃)
4132simp1d 1066 . . . . . . . 8 (𝜑𝐵𝐷)
4241necomd 2837 . . . . . . 7 (𝜑𝐷𝐵)
4342ad2antrr 758 . . . . . 6 (((𝜑𝐵 ∈ (𝐷𝐼𝐴)) ∧ 𝐵 ∈ (𝐷𝐼𝐶)) → 𝐷𝐵)
44 simplr 788 . . . . . 6 (((𝜑𝐵 ∈ (𝐷𝐼𝐴)) ∧ 𝐵 ∈ (𝐷𝐼𝐶)) → 𝐵 ∈ (𝐷𝐼𝐴))
45 simpr 476 . . . . . 6 (((𝜑𝐵 ∈ (𝐷𝐼𝐴)) ∧ 𝐵 ∈ (𝐷𝐼𝐶)) → 𝐵 ∈ (𝐷𝐼𝐶))
461, 2, 36, 37, 38, 39, 40, 43, 44, 45tgbtwnconn1 25270 . . . . 5 (((𝜑𝐵 ∈ (𝐷𝐼𝐴)) ∧ 𝐵 ∈ (𝐷𝐼𝐶)) → (𝐴 ∈ (𝐷𝐼𝐶) ∨ 𝐶 ∈ (𝐷𝐼𝐴)))
477ad2antrr 758 . . . . . . 7 (((𝜑𝐵 ∈ (𝐷𝐼𝐴)) ∧ 𝐶 ∈ (𝐷𝐼𝐵)) → 𝐺 ∈ TarskiG)
486ad2antrr 758 . . . . . . 7 (((𝜑𝐵 ∈ (𝐷𝐼𝐴)) ∧ 𝐶 ∈ (𝐷𝐼𝐵)) → 𝐷𝑃)
4910ad2antrr 758 . . . . . . 7 (((𝜑𝐵 ∈ (𝐷𝐼𝐴)) ∧ 𝐶 ∈ (𝐷𝐼𝐵)) → 𝐶𝑃)
505ad2antrr 758 . . . . . . 7 (((𝜑𝐵 ∈ (𝐷𝐼𝐴)) ∧ 𝐶 ∈ (𝐷𝐼𝐵)) → 𝐵𝑃)
514ad2antrr 758 . . . . . . 7 (((𝜑𝐵 ∈ (𝐷𝐼𝐴)) ∧ 𝐶 ∈ (𝐷𝐼𝐵)) → 𝐴𝑃)
52 simpr 476 . . . . . . 7 (((𝜑𝐵 ∈ (𝐷𝐼𝐴)) ∧ 𝐶 ∈ (𝐷𝐼𝐵)) → 𝐶 ∈ (𝐷𝐼𝐵))
53 simplr 788 . . . . . . 7 (((𝜑𝐵 ∈ (𝐷𝐼𝐴)) ∧ 𝐶 ∈ (𝐷𝐼𝐵)) → 𝐵 ∈ (𝐷𝐼𝐴))
541, 13, 2, 47, 48, 49, 50, 51, 52, 53tgbtwnexch 25193 . . . . . 6 (((𝜑𝐵 ∈ (𝐷𝐼𝐴)) ∧ 𝐶 ∈ (𝐷𝐼𝐵)) → 𝐶 ∈ (𝐷𝐼𝐴))
5554olcd 407 . . . . 5 (((𝜑𝐵 ∈ (𝐷𝐼𝐴)) ∧ 𝐶 ∈ (𝐷𝐼𝐵)) → (𝐴 ∈ (𝐷𝐼𝐶) ∨ 𝐶 ∈ (𝐷𝐼𝐴)))
5633adantr 480 . . . . 5 ((𝜑𝐵 ∈ (𝐷𝐼𝐴)) → (𝐵 ∈ (𝐷𝐼𝐶) ∨ 𝐶 ∈ (𝐷𝐼𝐵)))
5746, 55, 56mpjaodan 823 . . . 4 ((𝜑𝐵 ∈ (𝐷𝐼𝐴)) → (𝐴 ∈ (𝐷𝐼𝐶) ∨ 𝐶 ∈ (𝐷𝐼𝐴)))
581, 2, 3, 4, 5, 6, 7ishlg 25297 . . . . . 6 (𝜑 → (𝐴(𝐾𝐷)𝐵 ↔ (𝐴𝐷𝐵𝐷 ∧ (𝐴 ∈ (𝐷𝐼𝐵) ∨ 𝐵 ∈ (𝐷𝐼𝐴)))))
598, 58mpbid 221 . . . . 5 (𝜑 → (𝐴𝐷𝐵𝐷 ∧ (𝐴 ∈ (𝐷𝐼𝐵) ∨ 𝐵 ∈ (𝐷𝐼𝐴))))
6059simp3d 1068 . . . 4 (𝜑 → (𝐴 ∈ (𝐷𝐼𝐵) ∨ 𝐵 ∈ (𝐷𝐼𝐴)))
6135, 57, 60mpjaodan 823 . . 3 (𝜑 → (𝐴 ∈ (𝐷𝐼𝐶) ∨ 𝐶 ∈ (𝐷𝐼𝐴)))
629, 12, 613jca 1235 . 2 (𝜑 → (𝐴𝐷𝐶𝐷 ∧ (𝐴 ∈ (𝐷𝐼𝐶) ∨ 𝐶 ∈ (𝐷𝐼𝐴))))
631, 2, 3, 4, 10, 6, 7ishlg 25297 . 2 (𝜑 → (𝐴(𝐾𝐷)𝐶 ↔ (𝐴𝐷𝐶𝐷 ∧ (𝐴 ∈ (𝐷𝐼𝐶) ∨ 𝐶 ∈ (𝐷𝐼𝐴)))))
6462, 63mpbird 246 1 (𝜑𝐴(𝐾𝐷)𝐶)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∨ wo 382   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977   ≠ wne 2780   class class class wbr 4583  ‘cfv 5804  (class class class)co 6549  Basecbs 15695  distcds 15777  TarskiGcstrkg 25129  Itvcitv 25135  hlGchlg 25295 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-xnn0 11241  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-hash 12980  df-word 13154  df-concat 13156  df-s1 13157  df-s2 13444  df-s3 13445  df-trkgc 25147  df-trkgb 25148  df-trkgcb 25149  df-trkg 25152  df-cgrg 25206  df-hlg 25296 This theorem is referenced by:  opphllem4  25442  cgrahl1  25508  cgrahl2  25509  cgrahl  25518  acopyeu  25525  inaghl  25531
 Copyright terms: Public domain W3C validator