MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgbtwnconn3 Structured version   Visualization version   GIF version

Theorem tgbtwnconn3 25272
Description: Inner connectivity law for betweenness. Theorem 5.3 of [Schwabhauser] p. 41. (Contributed by Thierry Arnoux, 17-May-2019.)
Hypotheses
Ref Expression
tgbtwnconn.p 𝑃 = (Base‘𝐺)
tgbtwnconn.i 𝐼 = (Itv‘𝐺)
tgbtwnconn.g (𝜑𝐺 ∈ TarskiG)
tgbtwnconn.a (𝜑𝐴𝑃)
tgbtwnconn.b (𝜑𝐵𝑃)
tgbtwnconn.c (𝜑𝐶𝑃)
tgbtwnconn.d (𝜑𝐷𝑃)
tgbtwnconn3.1 (𝜑𝐵 ∈ (𝐴𝐼𝐷))
tgbtwnconn3.2 (𝜑𝐶 ∈ (𝐴𝐼𝐷))
Assertion
Ref Expression
tgbtwnconn3 (𝜑 → (𝐵 ∈ (𝐴𝐼𝐶) ∨ 𝐶 ∈ (𝐴𝐼𝐵)))

Proof of Theorem tgbtwnconn3
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 tgbtwnconn.p . . . 4 𝑃 = (Base‘𝐺)
2 eqid 2610 . . . 4 (dist‘𝐺) = (dist‘𝐺)
3 tgbtwnconn.i . . . 4 𝐼 = (Itv‘𝐺)
4 tgbtwnconn.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
54adantr 480 . . . 4 ((𝜑 ∧ (#‘𝑃) = 1) → 𝐺 ∈ TarskiG)
6 tgbtwnconn.b . . . . 5 (𝜑𝐵𝑃)
76adantr 480 . . . 4 ((𝜑 ∧ (#‘𝑃) = 1) → 𝐵𝑃)
8 tgbtwnconn.a . . . . 5 (𝜑𝐴𝑃)
98adantr 480 . . . 4 ((𝜑 ∧ (#‘𝑃) = 1) → 𝐴𝑃)
10 tgbtwnconn.c . . . . 5 (𝜑𝐶𝑃)
1110adantr 480 . . . 4 ((𝜑 ∧ (#‘𝑃) = 1) → 𝐶𝑃)
12 simpr 476 . . . 4 ((𝜑 ∧ (#‘𝑃) = 1) → (#‘𝑃) = 1)
131, 2, 3, 5, 7, 9, 11, 12tgldim0itv 25199 . . 3 ((𝜑 ∧ (#‘𝑃) = 1) → 𝐵 ∈ (𝐴𝐼𝐶))
1413orcd 406 . 2 ((𝜑 ∧ (#‘𝑃) = 1) → (𝐵 ∈ (𝐴𝐼𝐶) ∨ 𝐶 ∈ (𝐴𝐼𝐵)))
154ad3antrrr 762 . . . 4 ((((𝜑 ∧ 2 ≤ (#‘𝑃)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴𝑝)) → 𝐺 ∈ TarskiG)
16 simplr 788 . . . 4 ((((𝜑 ∧ 2 ≤ (#‘𝑃)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴𝑝)) → 𝑝𝑃)
178ad3antrrr 762 . . . 4 ((((𝜑 ∧ 2 ≤ (#‘𝑃)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴𝑝)) → 𝐴𝑃)
186ad3antrrr 762 . . . 4 ((((𝜑 ∧ 2 ≤ (#‘𝑃)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴𝑝)) → 𝐵𝑃)
1910ad3antrrr 762 . . . 4 ((((𝜑 ∧ 2 ≤ (#‘𝑃)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴𝑝)) → 𝐶𝑃)
20 simprr 792 . . . . 5 ((((𝜑 ∧ 2 ≤ (#‘𝑃)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴𝑝)) → 𝐴𝑝)
2120necomd 2837 . . . 4 ((((𝜑 ∧ 2 ≤ (#‘𝑃)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴𝑝)) → 𝑝𝐴)
22 tgbtwnconn.d . . . . . . 7 (𝜑𝐷𝑃)
2322ad3antrrr 762 . . . . . 6 ((((𝜑 ∧ 2 ≤ (#‘𝑃)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴𝑝)) → 𝐷𝑃)
24 tgbtwnconn3.1 . . . . . . 7 (𝜑𝐵 ∈ (𝐴𝐼𝐷))
2524ad3antrrr 762 . . . . . 6 ((((𝜑 ∧ 2 ≤ (#‘𝑃)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴𝑝)) → 𝐵 ∈ (𝐴𝐼𝐷))
26 simprl 790 . . . . . . 7 ((((𝜑 ∧ 2 ≤ (#‘𝑃)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴𝑝)) → 𝐴 ∈ (𝐷𝐼𝑝))
271, 2, 3, 15, 23, 17, 16, 26tgbtwncom 25183 . . . . . 6 ((((𝜑 ∧ 2 ≤ (#‘𝑃)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴𝑝)) → 𝐴 ∈ (𝑝𝐼𝐷))
281, 2, 3, 15, 18, 17, 16, 23, 25, 27tgbtwnintr 25188 . . . . 5 ((((𝜑 ∧ 2 ≤ (#‘𝑃)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴𝑝)) → 𝐴 ∈ (𝐵𝐼𝑝))
291, 2, 3, 15, 18, 17, 16, 28tgbtwncom 25183 . . . 4 ((((𝜑 ∧ 2 ≤ (#‘𝑃)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴𝑝)) → 𝐴 ∈ (𝑝𝐼𝐵))
30 tgbtwnconn3.2 . . . . . . . 8 (𝜑𝐶 ∈ (𝐴𝐼𝐷))
3130ad3antrrr 762 . . . . . . 7 ((((𝜑 ∧ 2 ≤ (#‘𝑃)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴𝑝)) → 𝐶 ∈ (𝐴𝐼𝐷))
321, 2, 3, 15, 17, 19, 23, 31tgbtwncom 25183 . . . . . 6 ((((𝜑 ∧ 2 ≤ (#‘𝑃)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴𝑝)) → 𝐶 ∈ (𝐷𝐼𝐴))
331, 2, 3, 15, 23, 19, 17, 16, 32, 26tgbtwnexch3 25189 . . . . 5 ((((𝜑 ∧ 2 ≤ (#‘𝑃)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴𝑝)) → 𝐴 ∈ (𝐶𝐼𝑝))
341, 2, 3, 15, 19, 17, 16, 33tgbtwncom 25183 . . . 4 ((((𝜑 ∧ 2 ≤ (#‘𝑃)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴𝑝)) → 𝐴 ∈ (𝑝𝐼𝐶))
351, 3, 15, 16, 17, 18, 19, 21, 29, 34tgbtwnconn2 25271 . . 3 ((((𝜑 ∧ 2 ≤ (#‘𝑃)) ∧ 𝑝𝑃) ∧ (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴𝑝)) → (𝐵 ∈ (𝐴𝐼𝐶) ∨ 𝐶 ∈ (𝐴𝐼𝐵)))
364adantr 480 . . . 4 ((𝜑 ∧ 2 ≤ (#‘𝑃)) → 𝐺 ∈ TarskiG)
3722adantr 480 . . . 4 ((𝜑 ∧ 2 ≤ (#‘𝑃)) → 𝐷𝑃)
388adantr 480 . . . 4 ((𝜑 ∧ 2 ≤ (#‘𝑃)) → 𝐴𝑃)
39 simpr 476 . . . 4 ((𝜑 ∧ 2 ≤ (#‘𝑃)) → 2 ≤ (#‘𝑃))
401, 2, 3, 36, 37, 38, 39tgbtwndiff 25201 . . 3 ((𝜑 ∧ 2 ≤ (#‘𝑃)) → ∃𝑝𝑃 (𝐴 ∈ (𝐷𝐼𝑝) ∧ 𝐴𝑝))
4135, 40r19.29a 3060 . 2 ((𝜑 ∧ 2 ≤ (#‘𝑃)) → (𝐵 ∈ (𝐴𝐼𝐶) ∨ 𝐶 ∈ (𝐴𝐼𝐵)))
421, 8tgldimor 25197 . 2 (𝜑 → ((#‘𝑃) = 1 ∨ 2 ≤ (#‘𝑃)))
4314, 41, 42mpjaodan 823 1 (𝜑 → (𝐵 ∈ (𝐴𝐼𝐶) ∨ 𝐶 ∈ (𝐴𝐼𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 382  wa 383   = wceq 1475  wcel 1977  wne 2780   class class class wbr 4583  cfv 5804  (class class class)co 6549  1c1 9816  cle 9954  2c2 10947  #chash 12979  Basecbs 15695  distcds 15777  TarskiGcstrkg 25129  Itvcitv 25135
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-xnn0 11241  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-hash 12980  df-word 13154  df-concat 13156  df-s1 13157  df-s2 13444  df-s3 13445  df-trkgc 25147  df-trkgb 25148  df-trkgcb 25149  df-trkg 25152  df-cgrg 25206
This theorem is referenced by:  tgbtwnconnln3  25273  hltr  25305  hlbtwn  25306  hlpasch  25448
  Copyright terms: Public domain W3C validator