Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > frege93 | Structured version Visualization version GIF version |
Description: Necessary condition for two elements to be related by the transitive closure. Proposition 93 of [Frege1879] p. 70. (Contributed by RP, 2-Jul-2020.) (Revised by RP, 5-Jul-2020.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
frege91.x | ⊢ 𝑋 ∈ 𝑈 |
frege91.y | ⊢ 𝑌 ∈ 𝑉 |
frege91.r | ⊢ 𝑅 ∈ 𝑊 |
Ref | Expression |
---|---|
frege93 | ⊢ (∀𝑓(∀𝑧(𝑋𝑅𝑧 → 𝑧 ∈ 𝑓) → (𝑅 hereditary 𝑓 → 𝑌 ∈ 𝑓)) → 𝑋(t+‘𝑅)𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3176 | . . . . 5 ⊢ 𝑓 ∈ V | |
2 | 1 | frege60c 37237 | . . . 4 ⊢ (∀𝑓(∀𝑧(𝑋𝑅𝑧 → 𝑧 ∈ 𝑓) → (𝑅 hereditary 𝑓 → 𝑌 ∈ 𝑓)) → ([𝑓 / 𝑓]𝑅 hereditary 𝑓 → ([𝑓 / 𝑓]∀𝑧(𝑋𝑅𝑧 → 𝑧 ∈ 𝑓) → [𝑓 / 𝑓]𝑌 ∈ 𝑓))) |
3 | sbcid 3419 | . . . 4 ⊢ ([𝑓 / 𝑓]𝑅 hereditary 𝑓 ↔ 𝑅 hereditary 𝑓) | |
4 | sbcid 3419 | . . . . 5 ⊢ ([𝑓 / 𝑓]∀𝑧(𝑋𝑅𝑧 → 𝑧 ∈ 𝑓) ↔ ∀𝑧(𝑋𝑅𝑧 → 𝑧 ∈ 𝑓)) | |
5 | sbcid 3419 | . . . . 5 ⊢ ([𝑓 / 𝑓]𝑌 ∈ 𝑓 ↔ 𝑌 ∈ 𝑓) | |
6 | 4, 5 | imbi12i 339 | . . . 4 ⊢ (([𝑓 / 𝑓]∀𝑧(𝑋𝑅𝑧 → 𝑧 ∈ 𝑓) → [𝑓 / 𝑓]𝑌 ∈ 𝑓) ↔ (∀𝑧(𝑋𝑅𝑧 → 𝑧 ∈ 𝑓) → 𝑌 ∈ 𝑓)) |
7 | 2, 3, 6 | 3imtr3g 283 | . . 3 ⊢ (∀𝑓(∀𝑧(𝑋𝑅𝑧 → 𝑧 ∈ 𝑓) → (𝑅 hereditary 𝑓 → 𝑌 ∈ 𝑓)) → (𝑅 hereditary 𝑓 → (∀𝑧(𝑋𝑅𝑧 → 𝑧 ∈ 𝑓) → 𝑌 ∈ 𝑓))) |
8 | 7 | axc4i 2116 | . 2 ⊢ (∀𝑓(∀𝑧(𝑋𝑅𝑧 → 𝑧 ∈ 𝑓) → (𝑅 hereditary 𝑓 → 𝑌 ∈ 𝑓)) → ∀𝑓(𝑅 hereditary 𝑓 → (∀𝑧(𝑋𝑅𝑧 → 𝑧 ∈ 𝑓) → 𝑌 ∈ 𝑓))) |
9 | frege91.x | . . 3 ⊢ 𝑋 ∈ 𝑈 | |
10 | frege91.y | . . 3 ⊢ 𝑌 ∈ 𝑉 | |
11 | frege91.r | . . 3 ⊢ 𝑅 ∈ 𝑊 | |
12 | 9, 10, 11 | frege90 37267 | . 2 ⊢ ((∀𝑓(∀𝑧(𝑋𝑅𝑧 → 𝑧 ∈ 𝑓) → (𝑅 hereditary 𝑓 → 𝑌 ∈ 𝑓)) → ∀𝑓(𝑅 hereditary 𝑓 → (∀𝑧(𝑋𝑅𝑧 → 𝑧 ∈ 𝑓) → 𝑌 ∈ 𝑓))) → (∀𝑓(∀𝑧(𝑋𝑅𝑧 → 𝑧 ∈ 𝑓) → (𝑅 hereditary 𝑓 → 𝑌 ∈ 𝑓)) → 𝑋(t+‘𝑅)𝑌)) |
13 | 8, 12 | ax-mp 5 | 1 ⊢ (∀𝑓(∀𝑧(𝑋𝑅𝑧 → 𝑧 ∈ 𝑓) → (𝑅 hereditary 𝑓 → 𝑌 ∈ 𝑓)) → 𝑋(t+‘𝑅)𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1473 ∈ wcel 1977 Vcvv 3173 [wsbc 3402 class class class wbr 4583 ‘cfv 5804 t+ctcl 13572 hereditary whe 37086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 ax-frege1 37104 ax-frege2 37105 ax-frege8 37123 ax-frege52a 37171 ax-frege58b 37215 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-ifp 1007 df-3or 1032 df-3an 1033 df-tru 1478 df-fal 1481 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-int 4411 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-2nd 7060 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-er 7629 df-en 7842 df-dom 7843 df-sdom 7844 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-nn 10898 df-2 10956 df-n0 11170 df-z 11255 df-uz 11564 df-seq 12664 df-trcl 13574 df-relexp 13609 df-he 37087 |
This theorem is referenced by: frege94 37271 |
Copyright terms: Public domain | W3C validator |