MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnwelem Structured version   Visualization version   GIF version

Theorem fnwelem 7179
Description: Lemma for fnwe 7180. (Contributed by Mario Carneiro, 10-Mar-2013.) (Revised by Mario Carneiro, 18-Nov-2014.)
Hypotheses
Ref Expression
fnwe.1 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐴) ∧ ((𝐹𝑥)𝑅(𝐹𝑦) ∨ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑆𝑦)))}
fnwe.2 (𝜑𝐹:𝐴𝐵)
fnwe.3 (𝜑𝑅 We 𝐵)
fnwe.4 (𝜑𝑆 We 𝐴)
fnwe.5 (𝜑 → (𝐹𝑤) ∈ V)
fnwelem.6 𝑄 = {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ (𝐵 × 𝐴) ∧ 𝑣 ∈ (𝐵 × 𝐴)) ∧ ((1st𝑢)𝑅(1st𝑣) ∨ ((1st𝑢) = (1st𝑣) ∧ (2nd𝑢)𝑆(2nd𝑣))))}
fnwelem.7 𝐺 = (𝑧𝐴 ↦ ⟨(𝐹𝑧), 𝑧⟩)
Assertion
Ref Expression
fnwelem (𝜑𝑇 We 𝐴)
Distinct variable groups:   𝑣,𝑢,𝑤,𝑥,𝑦,𝑧,𝐴   𝑢,𝐵,𝑣,𝑤,𝑥,𝑦,𝑧   𝑤,𝐺,𝑥,𝑦   𝜑,𝑤,𝑥,𝑧   𝑢,𝐹,𝑣,𝑤,𝑥,𝑦,𝑧   𝑤,𝑄,𝑥,𝑦   𝑢,𝑅,𝑣,𝑤,𝑥,𝑦   𝑢,𝑆,𝑣,𝑤,𝑥,𝑦   𝑤,𝑇
Allowed substitution hints:   𝜑(𝑦,𝑣,𝑢)   𝑄(𝑧,𝑣,𝑢)   𝑅(𝑧)   𝑆(𝑧)   𝑇(𝑥,𝑦,𝑧,𝑣,𝑢)   𝐺(𝑧,𝑣,𝑢)

Proof of Theorem fnwelem
StepHypRef Expression
1 fnwe.2 . . . 4 (𝜑𝐹:𝐴𝐵)
2 ffvelrn 6265 . . . . . 6 ((𝐹:𝐴𝐵𝑧𝐴) → (𝐹𝑧) ∈ 𝐵)
3 simpr 476 . . . . . 6 ((𝐹:𝐴𝐵𝑧𝐴) → 𝑧𝐴)
4 opelxp 5070 . . . . . 6 (⟨(𝐹𝑧), 𝑧⟩ ∈ (𝐵 × 𝐴) ↔ ((𝐹𝑧) ∈ 𝐵𝑧𝐴))
52, 3, 4sylanbrc 695 . . . . 5 ((𝐹:𝐴𝐵𝑧𝐴) → ⟨(𝐹𝑧), 𝑧⟩ ∈ (𝐵 × 𝐴))
6 fnwelem.7 . . . . 5 𝐺 = (𝑧𝐴 ↦ ⟨(𝐹𝑧), 𝑧⟩)
75, 6fmptd 6292 . . . 4 (𝐹:𝐴𝐵𝐺:𝐴⟶(𝐵 × 𝐴))
8 frn 5966 . . . 4 (𝐺:𝐴⟶(𝐵 × 𝐴) → ran 𝐺 ⊆ (𝐵 × 𝐴))
91, 7, 83syl 18 . . 3 (𝜑 → ran 𝐺 ⊆ (𝐵 × 𝐴))
10 fnwe.3 . . . 4 (𝜑𝑅 We 𝐵)
11 fnwe.4 . . . 4 (𝜑𝑆 We 𝐴)
12 fnwelem.6 . . . . 5 𝑄 = {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ (𝐵 × 𝐴) ∧ 𝑣 ∈ (𝐵 × 𝐴)) ∧ ((1st𝑢)𝑅(1st𝑣) ∨ ((1st𝑢) = (1st𝑣) ∧ (2nd𝑢)𝑆(2nd𝑣))))}
1312wexp 7178 . . . 4 ((𝑅 We 𝐵𝑆 We 𝐴) → 𝑄 We (𝐵 × 𝐴))
1410, 11, 13syl2anc 691 . . 3 (𝜑𝑄 We (𝐵 × 𝐴))
15 wess 5025 . . 3 (ran 𝐺 ⊆ (𝐵 × 𝐴) → (𝑄 We (𝐵 × 𝐴) → 𝑄 We ran 𝐺))
169, 14, 15sylc 63 . 2 (𝜑𝑄 We ran 𝐺)
17 fveq2 6103 . . . . . . . . . . . . 13 (𝑧 = 𝑥 → (𝐹𝑧) = (𝐹𝑥))
18 id 22 . . . . . . . . . . . . 13 (𝑧 = 𝑥𝑧 = 𝑥)
1917, 18opeq12d 4348 . . . . . . . . . . . 12 (𝑧 = 𝑥 → ⟨(𝐹𝑧), 𝑧⟩ = ⟨(𝐹𝑥), 𝑥⟩)
20 opex 4859 . . . . . . . . . . . 12 ⟨(𝐹𝑥), 𝑥⟩ ∈ V
2119, 6, 20fvmpt 6191 . . . . . . . . . . 11 (𝑥𝐴 → (𝐺𝑥) = ⟨(𝐹𝑥), 𝑥⟩)
22 fveq2 6103 . . . . . . . . . . . . 13 (𝑧 = 𝑦 → (𝐹𝑧) = (𝐹𝑦))
23 id 22 . . . . . . . . . . . . 13 (𝑧 = 𝑦𝑧 = 𝑦)
2422, 23opeq12d 4348 . . . . . . . . . . . 12 (𝑧 = 𝑦 → ⟨(𝐹𝑧), 𝑧⟩ = ⟨(𝐹𝑦), 𝑦⟩)
25 opex 4859 . . . . . . . . . . . 12 ⟨(𝐹𝑦), 𝑦⟩ ∈ V
2624, 6, 25fvmpt 6191 . . . . . . . . . . 11 (𝑦𝐴 → (𝐺𝑦) = ⟨(𝐹𝑦), 𝑦⟩)
2721, 26eqeqan12d 2626 . . . . . . . . . 10 ((𝑥𝐴𝑦𝐴) → ((𝐺𝑥) = (𝐺𝑦) ↔ ⟨(𝐹𝑥), 𝑥⟩ = ⟨(𝐹𝑦), 𝑦⟩))
28 fvex 6113 . . . . . . . . . . . 12 (𝐹𝑥) ∈ V
29 vex 3176 . . . . . . . . . . . 12 𝑥 ∈ V
3028, 29opth 4871 . . . . . . . . . . 11 (⟨(𝐹𝑥), 𝑥⟩ = ⟨(𝐹𝑦), 𝑦⟩ ↔ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥 = 𝑦))
3130simprbi 479 . . . . . . . . . 10 (⟨(𝐹𝑥), 𝑥⟩ = ⟨(𝐹𝑦), 𝑦⟩ → 𝑥 = 𝑦)
3227, 31syl6bi 242 . . . . . . . . 9 ((𝑥𝐴𝑦𝐴) → ((𝐺𝑥) = (𝐺𝑦) → 𝑥 = 𝑦))
3332rgen2a 2960 . . . . . . . 8 𝑥𝐴𝑦𝐴 ((𝐺𝑥) = (𝐺𝑦) → 𝑥 = 𝑦)
3433a1i 11 . . . . . . 7 (𝐹:𝐴𝐵 → ∀𝑥𝐴𝑦𝐴 ((𝐺𝑥) = (𝐺𝑦) → 𝑥 = 𝑦))
35 dff13 6416 . . . . . . 7 (𝐺:𝐴1-1→(𝐵 × 𝐴) ↔ (𝐺:𝐴⟶(𝐵 × 𝐴) ∧ ∀𝑥𝐴𝑦𝐴 ((𝐺𝑥) = (𝐺𝑦) → 𝑥 = 𝑦)))
367, 34, 35sylanbrc 695 . . . . . 6 (𝐹:𝐴𝐵𝐺:𝐴1-1→(𝐵 × 𝐴))
37 f1f1orn 6061 . . . . . 6 (𝐺:𝐴1-1→(𝐵 × 𝐴) → 𝐺:𝐴1-1-onto→ran 𝐺)
38 f1ocnv 6062 . . . . . 6 (𝐺:𝐴1-1-onto→ran 𝐺𝐺:ran 𝐺1-1-onto𝐴)
391, 36, 37, 384syl 19 . . . . 5 (𝜑𝐺:ran 𝐺1-1-onto𝐴)
40 eqid 2610 . . . . . . 7 {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐴) ∧ (𝐺𝑥)𝑄(𝐺𝑦))} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐴) ∧ (𝐺𝑥)𝑄(𝐺𝑦))}
4140f1oiso2 6502 . . . . . 6 (𝐺:ran 𝐺1-1-onto𝐴𝐺 Isom 𝑄, {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐴) ∧ (𝐺𝑥)𝑄(𝐺𝑦))} (ran 𝐺, 𝐴))
42 fnwe.1 . . . . . . . 8 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐴) ∧ ((𝐹𝑥)𝑅(𝐹𝑦) ∨ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑆𝑦)))}
43 frel 5963 . . . . . . . . . . . . . . . 16 (𝐺:𝐴⟶(𝐵 × 𝐴) → Rel 𝐺)
44 dfrel2 5502 . . . . . . . . . . . . . . . 16 (Rel 𝐺𝐺 = 𝐺)
4543, 44sylib 207 . . . . . . . . . . . . . . 15 (𝐺:𝐴⟶(𝐵 × 𝐴) → 𝐺 = 𝐺)
4645fveq1d 6105 . . . . . . . . . . . . . 14 (𝐺:𝐴⟶(𝐵 × 𝐴) → (𝐺𝑥) = (𝐺𝑥))
4745fveq1d 6105 . . . . . . . . . . . . . 14 (𝐺:𝐴⟶(𝐵 × 𝐴) → (𝐺𝑦) = (𝐺𝑦))
4846, 47breq12d 4596 . . . . . . . . . . . . 13 (𝐺:𝐴⟶(𝐵 × 𝐴) → ((𝐺𝑥)𝑄(𝐺𝑦) ↔ (𝐺𝑥)𝑄(𝐺𝑦)))
497, 48syl 17 . . . . . . . . . . . 12 (𝐹:𝐴𝐵 → ((𝐺𝑥)𝑄(𝐺𝑦) ↔ (𝐺𝑥)𝑄(𝐺𝑦)))
5049adantr 480 . . . . . . . . . . 11 ((𝐹:𝐴𝐵 ∧ (𝑥𝐴𝑦𝐴)) → ((𝐺𝑥)𝑄(𝐺𝑦) ↔ (𝐺𝑥)𝑄(𝐺𝑦)))
5121, 26breqan12d 4599 . . . . . . . . . . . 12 ((𝑥𝐴𝑦𝐴) → ((𝐺𝑥)𝑄(𝐺𝑦) ↔ ⟨(𝐹𝑥), 𝑥𝑄⟨(𝐹𝑦), 𝑦⟩))
5251adantl 481 . . . . . . . . . . 11 ((𝐹:𝐴𝐵 ∧ (𝑥𝐴𝑦𝐴)) → ((𝐺𝑥)𝑄(𝐺𝑦) ↔ ⟨(𝐹𝑥), 𝑥𝑄⟨(𝐹𝑦), 𝑦⟩))
53 ffvelrn 6265 . . . . . . . . . . . . . . 15 ((𝐹:𝐴𝐵𝑥𝐴) → (𝐹𝑥) ∈ 𝐵)
54 simpr 476 . . . . . . . . . . . . . . 15 ((𝐹:𝐴𝐵𝑥𝐴) → 𝑥𝐴)
5553, 54jca 553 . . . . . . . . . . . . . 14 ((𝐹:𝐴𝐵𝑥𝐴) → ((𝐹𝑥) ∈ 𝐵𝑥𝐴))
56 ffvelrn 6265 . . . . . . . . . . . . . . 15 ((𝐹:𝐴𝐵𝑦𝐴) → (𝐹𝑦) ∈ 𝐵)
57 simpr 476 . . . . . . . . . . . . . . 15 ((𝐹:𝐴𝐵𝑦𝐴) → 𝑦𝐴)
5856, 57jca 553 . . . . . . . . . . . . . 14 ((𝐹:𝐴𝐵𝑦𝐴) → ((𝐹𝑦) ∈ 𝐵𝑦𝐴))
5955, 58anim12dan 878 . . . . . . . . . . . . 13 ((𝐹:𝐴𝐵 ∧ (𝑥𝐴𝑦𝐴)) → (((𝐹𝑥) ∈ 𝐵𝑥𝐴) ∧ ((𝐹𝑦) ∈ 𝐵𝑦𝐴)))
6059biantrurd 528 . . . . . . . . . . . 12 ((𝐹:𝐴𝐵 ∧ (𝑥𝐴𝑦𝐴)) → (((𝐹𝑥)𝑅(𝐹𝑦) ∨ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑆𝑦)) ↔ ((((𝐹𝑥) ∈ 𝐵𝑥𝐴) ∧ ((𝐹𝑦) ∈ 𝐵𝑦𝐴)) ∧ ((𝐹𝑥)𝑅(𝐹𝑦) ∨ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑆𝑦)))))
61 eleq1 2676 . . . . . . . . . . . . . . . 16 (𝑢 = ⟨(𝐹𝑥), 𝑥⟩ → (𝑢 ∈ (𝐵 × 𝐴) ↔ ⟨(𝐹𝑥), 𝑥⟩ ∈ (𝐵 × 𝐴)))
62 opelxp 5070 . . . . . . . . . . . . . . . 16 (⟨(𝐹𝑥), 𝑥⟩ ∈ (𝐵 × 𝐴) ↔ ((𝐹𝑥) ∈ 𝐵𝑥𝐴))
6361, 62syl6bb 275 . . . . . . . . . . . . . . 15 (𝑢 = ⟨(𝐹𝑥), 𝑥⟩ → (𝑢 ∈ (𝐵 × 𝐴) ↔ ((𝐹𝑥) ∈ 𝐵𝑥𝐴)))
6463anbi1d 737 . . . . . . . . . . . . . 14 (𝑢 = ⟨(𝐹𝑥), 𝑥⟩ → ((𝑢 ∈ (𝐵 × 𝐴) ∧ 𝑣 ∈ (𝐵 × 𝐴)) ↔ (((𝐹𝑥) ∈ 𝐵𝑥𝐴) ∧ 𝑣 ∈ (𝐵 × 𝐴))))
6528, 29op1std 7069 . . . . . . . . . . . . . . . 16 (𝑢 = ⟨(𝐹𝑥), 𝑥⟩ → (1st𝑢) = (𝐹𝑥))
6665breq1d 4593 . . . . . . . . . . . . . . 15 (𝑢 = ⟨(𝐹𝑥), 𝑥⟩ → ((1st𝑢)𝑅(1st𝑣) ↔ (𝐹𝑥)𝑅(1st𝑣)))
6765eqeq1d 2612 . . . . . . . . . . . . . . . 16 (𝑢 = ⟨(𝐹𝑥), 𝑥⟩ → ((1st𝑢) = (1st𝑣) ↔ (𝐹𝑥) = (1st𝑣)))
6828, 29op2ndd 7070 . . . . . . . . . . . . . . . . 17 (𝑢 = ⟨(𝐹𝑥), 𝑥⟩ → (2nd𝑢) = 𝑥)
6968breq1d 4593 . . . . . . . . . . . . . . . 16 (𝑢 = ⟨(𝐹𝑥), 𝑥⟩ → ((2nd𝑢)𝑆(2nd𝑣) ↔ 𝑥𝑆(2nd𝑣)))
7067, 69anbi12d 743 . . . . . . . . . . . . . . 15 (𝑢 = ⟨(𝐹𝑥), 𝑥⟩ → (((1st𝑢) = (1st𝑣) ∧ (2nd𝑢)𝑆(2nd𝑣)) ↔ ((𝐹𝑥) = (1st𝑣) ∧ 𝑥𝑆(2nd𝑣))))
7166, 70orbi12d 742 . . . . . . . . . . . . . 14 (𝑢 = ⟨(𝐹𝑥), 𝑥⟩ → (((1st𝑢)𝑅(1st𝑣) ∨ ((1st𝑢) = (1st𝑣) ∧ (2nd𝑢)𝑆(2nd𝑣))) ↔ ((𝐹𝑥)𝑅(1st𝑣) ∨ ((𝐹𝑥) = (1st𝑣) ∧ 𝑥𝑆(2nd𝑣)))))
7264, 71anbi12d 743 . . . . . . . . . . . . 13 (𝑢 = ⟨(𝐹𝑥), 𝑥⟩ → (((𝑢 ∈ (𝐵 × 𝐴) ∧ 𝑣 ∈ (𝐵 × 𝐴)) ∧ ((1st𝑢)𝑅(1st𝑣) ∨ ((1st𝑢) = (1st𝑣) ∧ (2nd𝑢)𝑆(2nd𝑣)))) ↔ ((((𝐹𝑥) ∈ 𝐵𝑥𝐴) ∧ 𝑣 ∈ (𝐵 × 𝐴)) ∧ ((𝐹𝑥)𝑅(1st𝑣) ∨ ((𝐹𝑥) = (1st𝑣) ∧ 𝑥𝑆(2nd𝑣))))))
73 eleq1 2676 . . . . . . . . . . . . . . . 16 (𝑣 = ⟨(𝐹𝑦), 𝑦⟩ → (𝑣 ∈ (𝐵 × 𝐴) ↔ ⟨(𝐹𝑦), 𝑦⟩ ∈ (𝐵 × 𝐴)))
74 opelxp 5070 . . . . . . . . . . . . . . . 16 (⟨(𝐹𝑦), 𝑦⟩ ∈ (𝐵 × 𝐴) ↔ ((𝐹𝑦) ∈ 𝐵𝑦𝐴))
7573, 74syl6bb 275 . . . . . . . . . . . . . . 15 (𝑣 = ⟨(𝐹𝑦), 𝑦⟩ → (𝑣 ∈ (𝐵 × 𝐴) ↔ ((𝐹𝑦) ∈ 𝐵𝑦𝐴)))
7675anbi2d 736 . . . . . . . . . . . . . 14 (𝑣 = ⟨(𝐹𝑦), 𝑦⟩ → ((((𝐹𝑥) ∈ 𝐵𝑥𝐴) ∧ 𝑣 ∈ (𝐵 × 𝐴)) ↔ (((𝐹𝑥) ∈ 𝐵𝑥𝐴) ∧ ((𝐹𝑦) ∈ 𝐵𝑦𝐴))))
77 fvex 6113 . . . . . . . . . . . . . . . . 17 (𝐹𝑦) ∈ V
78 vex 3176 . . . . . . . . . . . . . . . . 17 𝑦 ∈ V
7977, 78op1std 7069 . . . . . . . . . . . . . . . 16 (𝑣 = ⟨(𝐹𝑦), 𝑦⟩ → (1st𝑣) = (𝐹𝑦))
8079breq2d 4595 . . . . . . . . . . . . . . 15 (𝑣 = ⟨(𝐹𝑦), 𝑦⟩ → ((𝐹𝑥)𝑅(1st𝑣) ↔ (𝐹𝑥)𝑅(𝐹𝑦)))
8179eqeq2d 2620 . . . . . . . . . . . . . . . 16 (𝑣 = ⟨(𝐹𝑦), 𝑦⟩ → ((𝐹𝑥) = (1st𝑣) ↔ (𝐹𝑥) = (𝐹𝑦)))
8277, 78op2ndd 7070 . . . . . . . . . . . . . . . . 17 (𝑣 = ⟨(𝐹𝑦), 𝑦⟩ → (2nd𝑣) = 𝑦)
8382breq2d 4595 . . . . . . . . . . . . . . . 16 (𝑣 = ⟨(𝐹𝑦), 𝑦⟩ → (𝑥𝑆(2nd𝑣) ↔ 𝑥𝑆𝑦))
8481, 83anbi12d 743 . . . . . . . . . . . . . . 15 (𝑣 = ⟨(𝐹𝑦), 𝑦⟩ → (((𝐹𝑥) = (1st𝑣) ∧ 𝑥𝑆(2nd𝑣)) ↔ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑆𝑦)))
8580, 84orbi12d 742 . . . . . . . . . . . . . 14 (𝑣 = ⟨(𝐹𝑦), 𝑦⟩ → (((𝐹𝑥)𝑅(1st𝑣) ∨ ((𝐹𝑥) = (1st𝑣) ∧ 𝑥𝑆(2nd𝑣))) ↔ ((𝐹𝑥)𝑅(𝐹𝑦) ∨ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑆𝑦))))
8676, 85anbi12d 743 . . . . . . . . . . . . 13 (𝑣 = ⟨(𝐹𝑦), 𝑦⟩ → (((((𝐹𝑥) ∈ 𝐵𝑥𝐴) ∧ 𝑣 ∈ (𝐵 × 𝐴)) ∧ ((𝐹𝑥)𝑅(1st𝑣) ∨ ((𝐹𝑥) = (1st𝑣) ∧ 𝑥𝑆(2nd𝑣)))) ↔ ((((𝐹𝑥) ∈ 𝐵𝑥𝐴) ∧ ((𝐹𝑦) ∈ 𝐵𝑦𝐴)) ∧ ((𝐹𝑥)𝑅(𝐹𝑦) ∨ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑆𝑦)))))
8720, 25, 72, 86, 12brab 4923 . . . . . . . . . . . 12 (⟨(𝐹𝑥), 𝑥𝑄⟨(𝐹𝑦), 𝑦⟩ ↔ ((((𝐹𝑥) ∈ 𝐵𝑥𝐴) ∧ ((𝐹𝑦) ∈ 𝐵𝑦𝐴)) ∧ ((𝐹𝑥)𝑅(𝐹𝑦) ∨ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑆𝑦))))
8860, 87syl6rbbr 278 . . . . . . . . . . 11 ((𝐹:𝐴𝐵 ∧ (𝑥𝐴𝑦𝐴)) → (⟨(𝐹𝑥), 𝑥𝑄⟨(𝐹𝑦), 𝑦⟩ ↔ ((𝐹𝑥)𝑅(𝐹𝑦) ∨ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑆𝑦))))
8950, 52, 883bitrrd 294 . . . . . . . . . 10 ((𝐹:𝐴𝐵 ∧ (𝑥𝐴𝑦𝐴)) → (((𝐹𝑥)𝑅(𝐹𝑦) ∨ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑆𝑦)) ↔ (𝐺𝑥)𝑄(𝐺𝑦)))
9089pm5.32da 671 . . . . . . . . 9 (𝐹:𝐴𝐵 → (((𝑥𝐴𝑦𝐴) ∧ ((𝐹𝑥)𝑅(𝐹𝑦) ∨ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑆𝑦))) ↔ ((𝑥𝐴𝑦𝐴) ∧ (𝐺𝑥)𝑄(𝐺𝑦))))
9190opabbidv 4648 . . . . . . . 8 (𝐹:𝐴𝐵 → {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐴) ∧ ((𝐹𝑥)𝑅(𝐹𝑦) ∨ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑆𝑦)))} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐴) ∧ (𝐺𝑥)𝑄(𝐺𝑦))})
9242, 91syl5eq 2656 . . . . . . 7 (𝐹:𝐴𝐵𝑇 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐴) ∧ (𝐺𝑥)𝑄(𝐺𝑦))})
93 isoeq3 6469 . . . . . . 7 (𝑇 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐴) ∧ (𝐺𝑥)𝑄(𝐺𝑦))} → (𝐺 Isom 𝑄, 𝑇 (ran 𝐺, 𝐴) ↔ 𝐺 Isom 𝑄, {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐴) ∧ (𝐺𝑥)𝑄(𝐺𝑦))} (ran 𝐺, 𝐴)))
9492, 93syl 17 . . . . . 6 (𝐹:𝐴𝐵 → (𝐺 Isom 𝑄, 𝑇 (ran 𝐺, 𝐴) ↔ 𝐺 Isom 𝑄, {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐴𝑦𝐴) ∧ (𝐺𝑥)𝑄(𝐺𝑦))} (ran 𝐺, 𝐴)))
9541, 94syl5ibr 235 . . . . 5 (𝐹:𝐴𝐵 → (𝐺:ran 𝐺1-1-onto𝐴𝐺 Isom 𝑄, 𝑇 (ran 𝐺, 𝐴)))
961, 39, 95sylc 63 . . . 4 (𝜑𝐺 Isom 𝑄, 𝑇 (ran 𝐺, 𝐴))
97 isocnv 6480 . . . 4 (𝐺 Isom 𝑄, 𝑇 (ran 𝐺, 𝐴) → 𝐺 Isom 𝑇, 𝑄 (𝐴, ran 𝐺))
9896, 97syl 17 . . 3 (𝜑𝐺 Isom 𝑇, 𝑄 (𝐴, ran 𝐺))
99 imacnvcnv 5517 . . . . 5 (𝐺𝑤) = (𝐺𝑤)
100 fnwe.5 . . . . . . 7 (𝜑 → (𝐹𝑤) ∈ V)
101 vex 3176 . . . . . . 7 𝑤 ∈ V
102 xpexg 6858 . . . . . . 7 (((𝐹𝑤) ∈ V ∧ 𝑤 ∈ V) → ((𝐹𝑤) × 𝑤) ∈ V)
103100, 101, 102sylancl 693 . . . . . 6 (𝜑 → ((𝐹𝑤) × 𝑤) ∈ V)
104 imadmres 5544 . . . . . . 7 (𝐺 “ dom (𝐺𝑤)) = (𝐺𝑤)
105 dmres 5339 . . . . . . . . . . 11 dom (𝐺𝑤) = (𝑤 ∩ dom 𝐺)
106105elin2 3763 . . . . . . . . . 10 (𝑥 ∈ dom (𝐺𝑤) ↔ (𝑥𝑤𝑥 ∈ dom 𝐺))
107 simprr 792 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝑤𝑥 ∈ dom 𝐺)) → 𝑥 ∈ dom 𝐺)
108 f1dm 6018 . . . . . . . . . . . . . . 15 (𝐺:𝐴1-1→(𝐵 × 𝐴) → dom 𝐺 = 𝐴)
1091, 36, 1083syl 18 . . . . . . . . . . . . . 14 (𝜑 → dom 𝐺 = 𝐴)
110109adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝑤𝑥 ∈ dom 𝐺)) → dom 𝐺 = 𝐴)
111107, 110eleqtrd 2690 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑤𝑥 ∈ dom 𝐺)) → 𝑥𝐴)
112111, 21syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝑤𝑥 ∈ dom 𝐺)) → (𝐺𝑥) = ⟨(𝐹𝑥), 𝑥⟩)
113 ffn 5958 . . . . . . . . . . . . . . . 16 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
1141, 113syl 17 . . . . . . . . . . . . . . 15 (𝜑𝐹 Fn 𝐴)
115114adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥𝑤𝑥 ∈ dom 𝐺)) → 𝐹 Fn 𝐴)
116 dmres 5339 . . . . . . . . . . . . . . 15 dom (𝐹𝑤) = (𝑤 ∩ dom 𝐹)
117 inss2 3796 . . . . . . . . . . . . . . . 16 (𝑤 ∩ dom 𝐹) ⊆ dom 𝐹
118 fndm 5904 . . . . . . . . . . . . . . . . 17 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
119115, 118syl 17 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑥𝑤𝑥 ∈ dom 𝐺)) → dom 𝐹 = 𝐴)
120117, 119syl5sseq 3616 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥𝑤𝑥 ∈ dom 𝐺)) → (𝑤 ∩ dom 𝐹) ⊆ 𝐴)
121116, 120syl5eqss 3612 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥𝑤𝑥 ∈ dom 𝐺)) → dom (𝐹𝑤) ⊆ 𝐴)
122 simprl 790 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥𝑤𝑥 ∈ dom 𝐺)) → 𝑥𝑤)
123111, 119eleqtrrd 2691 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥𝑤𝑥 ∈ dom 𝐺)) → 𝑥 ∈ dom 𝐹)
124116elin2 3763 . . . . . . . . . . . . . . 15 (𝑥 ∈ dom (𝐹𝑤) ↔ (𝑥𝑤𝑥 ∈ dom 𝐹))
125122, 123, 124sylanbrc 695 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥𝑤𝑥 ∈ dom 𝐺)) → 𝑥 ∈ dom (𝐹𝑤))
126 fnfvima 6400 . . . . . . . . . . . . . 14 ((𝐹 Fn 𝐴 ∧ dom (𝐹𝑤) ⊆ 𝐴𝑥 ∈ dom (𝐹𝑤)) → (𝐹𝑥) ∈ (𝐹 “ dom (𝐹𝑤)))
127115, 121, 125, 126syl3anc 1318 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝑤𝑥 ∈ dom 𝐺)) → (𝐹𝑥) ∈ (𝐹 “ dom (𝐹𝑤)))
128 imadmres 5544 . . . . . . . . . . . . 13 (𝐹 “ dom (𝐹𝑤)) = (𝐹𝑤)
129127, 128syl6eleq 2698 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑤𝑥 ∈ dom 𝐺)) → (𝐹𝑥) ∈ (𝐹𝑤))
130 opelxpi 5072 . . . . . . . . . . . 12 (((𝐹𝑥) ∈ (𝐹𝑤) ∧ 𝑥𝑤) → ⟨(𝐹𝑥), 𝑥⟩ ∈ ((𝐹𝑤) × 𝑤))
131129, 122, 130syl2anc 691 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝑤𝑥 ∈ dom 𝐺)) → ⟨(𝐹𝑥), 𝑥⟩ ∈ ((𝐹𝑤) × 𝑤))
132112, 131eqeltrd 2688 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝑤𝑥 ∈ dom 𝐺)) → (𝐺𝑥) ∈ ((𝐹𝑤) × 𝑤))
133106, 132sylan2b 491 . . . . . . . . 9 ((𝜑𝑥 ∈ dom (𝐺𝑤)) → (𝐺𝑥) ∈ ((𝐹𝑤) × 𝑤))
134133ralrimiva 2949 . . . . . . . 8 (𝜑 → ∀𝑥 ∈ dom (𝐺𝑤)(𝐺𝑥) ∈ ((𝐹𝑤) × 𝑤))
135 f1fun 6016 . . . . . . . . . 10 (𝐺:𝐴1-1→(𝐵 × 𝐴) → Fun 𝐺)
1361, 36, 1353syl 18 . . . . . . . . 9 (𝜑 → Fun 𝐺)
137 resss 5342 . . . . . . . . . 10 (𝐺𝑤) ⊆ 𝐺
138 dmss 5245 . . . . . . . . . 10 ((𝐺𝑤) ⊆ 𝐺 → dom (𝐺𝑤) ⊆ dom 𝐺)
139137, 138ax-mp 5 . . . . . . . . 9 dom (𝐺𝑤) ⊆ dom 𝐺
140 funimass4 6157 . . . . . . . . 9 ((Fun 𝐺 ∧ dom (𝐺𝑤) ⊆ dom 𝐺) → ((𝐺 “ dom (𝐺𝑤)) ⊆ ((𝐹𝑤) × 𝑤) ↔ ∀𝑥 ∈ dom (𝐺𝑤)(𝐺𝑥) ∈ ((𝐹𝑤) × 𝑤)))
141136, 139, 140sylancl 693 . . . . . . . 8 (𝜑 → ((𝐺 “ dom (𝐺𝑤)) ⊆ ((𝐹𝑤) × 𝑤) ↔ ∀𝑥 ∈ dom (𝐺𝑤)(𝐺𝑥) ∈ ((𝐹𝑤) × 𝑤)))
142134, 141mpbird 246 . . . . . . 7 (𝜑 → (𝐺 “ dom (𝐺𝑤)) ⊆ ((𝐹𝑤) × 𝑤))
143104, 142syl5eqssr 3613 . . . . . 6 (𝜑 → (𝐺𝑤) ⊆ ((𝐹𝑤) × 𝑤))
144103, 143ssexd 4733 . . . . 5 (𝜑 → (𝐺𝑤) ∈ V)
14599, 144syl5eqel 2692 . . . 4 (𝜑 → (𝐺𝑤) ∈ V)
146145alrimiv 1842 . . 3 (𝜑 → ∀𝑤(𝐺𝑤) ∈ V)
147 isowe2 6500 . . 3 ((𝐺 Isom 𝑇, 𝑄 (𝐴, ran 𝐺) ∧ ∀𝑤(𝐺𝑤) ∈ V) → (𝑄 We ran 𝐺𝑇 We 𝐴))
14898, 146, 147syl2anc 691 . 2 (𝜑 → (𝑄 We ran 𝐺𝑇 We 𝐴))
14916, 148mpd 15 1 (𝜑𝑇 We 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wo 382  wa 383  wal 1473   = wceq 1475  wcel 1977  wral 2896  Vcvv 3173  cin 3539  wss 3540  cop 4131   class class class wbr 4583  {copab 4642  cmpt 4643   We wwe 4996   × cxp 5036  ccnv 5037  dom cdm 5038  ran crn 5039  cres 5040  cima 5041  Rel wrel 5043  Fun wfun 5798   Fn wfn 5799  wf 5800  1-1wf1 5801  1-1-ontowf1o 5803  cfv 5804   Isom wiso 5805  1st c1st 7057  2nd c2nd 7058
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-int 4411  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-1st 7059  df-2nd 7060
This theorem is referenced by:  fnwe  7180
  Copyright terms: Public domain W3C validator