MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flimopn Structured version   Visualization version   GIF version

Theorem flimopn 21589
Description: The condition for being a limit point of a filter still holds if one only considers open neighborhoods. (Contributed by Jeff Hankins, 4-Sep-2009.) (Proof shortened by Mario Carneiro, 9-Apr-2015.)
Assertion
Ref Expression
flimopn ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐴 ∈ (𝐽 fLim 𝐹) ↔ (𝐴𝑋 ∧ ∀𝑥𝐽 (𝐴𝑥𝑥𝐹))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐽   𝑥,𝑋

Proof of Theorem flimopn
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 elflim 21585 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐴 ∈ (𝐽 fLim 𝐹) ↔ (𝐴𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹)))
2 dfss3 3558 . . . 4 (((nei‘𝐽)‘{𝐴}) ⊆ 𝐹 ↔ ∀𝑦 ∈ ((nei‘𝐽)‘{𝐴})𝑦𝐹)
3 topontop 20541 . . . . . . . . . . 11 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
43ad2antrr 758 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) → 𝐽 ∈ Top)
5 opnneip 20733 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ 𝑥𝐽𝐴𝑥) → 𝑥 ∈ ((nei‘𝐽)‘{𝐴}))
653expb 1258 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ (𝑥𝐽𝐴𝑥)) → 𝑥 ∈ ((nei‘𝐽)‘{𝐴}))
74, 6sylan 487 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) ∧ (𝑥𝐽𝐴𝑥)) → 𝑥 ∈ ((nei‘𝐽)‘{𝐴}))
8 eleq1 2676 . . . . . . . . . 10 (𝑦 = 𝑥 → (𝑦𝐹𝑥𝐹))
98rspcv 3278 . . . . . . . . 9 (𝑥 ∈ ((nei‘𝐽)‘{𝐴}) → (∀𝑦 ∈ ((nei‘𝐽)‘{𝐴})𝑦𝐹𝑥𝐹))
107, 9syl 17 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) ∧ (𝑥𝐽𝐴𝑥)) → (∀𝑦 ∈ ((nei‘𝐽)‘{𝐴})𝑦𝐹𝑥𝐹))
1110expr 641 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑥𝐽) → (𝐴𝑥 → (∀𝑦 ∈ ((nei‘𝐽)‘{𝐴})𝑦𝐹𝑥𝐹)))
1211com23 84 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑥𝐽) → (∀𝑦 ∈ ((nei‘𝐽)‘{𝐴})𝑦𝐹 → (𝐴𝑥𝑥𝐹)))
1312ralrimdva 2952 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) → (∀𝑦 ∈ ((nei‘𝐽)‘{𝐴})𝑦𝐹 → ∀𝑥𝐽 (𝐴𝑥𝑥𝐹)))
14 simpr 476 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝐴})) → 𝑦 ∈ ((nei‘𝐽)‘{𝐴}))
153ad3antrrr 762 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝐴})) → 𝐽 ∈ Top)
16 simplr 788 . . . . . . . . . . . . 13 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝐴})) → 𝐴𝑋)
17 toponuni 20542 . . . . . . . . . . . . . 14 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
1817ad3antrrr 762 . . . . . . . . . . . . 13 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝐴})) → 𝑋 = 𝐽)
1916, 18eleqtrd 2690 . . . . . . . . . . . 12 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝐴})) → 𝐴 𝐽)
2019snssd 4281 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝐴})) → {𝐴} ⊆ 𝐽)
21 eqid 2610 . . . . . . . . . . . . 13 𝐽 = 𝐽
2221neii1 20720 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝐴})) → 𝑦 𝐽)
234, 22sylan 487 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝐴})) → 𝑦 𝐽)
2421neiint 20718 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ {𝐴} ⊆ 𝐽𝑦 𝐽) → (𝑦 ∈ ((nei‘𝐽)‘{𝐴}) ↔ {𝐴} ⊆ ((int‘𝐽)‘𝑦)))
2515, 20, 23, 24syl3anc 1318 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝐴})) → (𝑦 ∈ ((nei‘𝐽)‘{𝐴}) ↔ {𝐴} ⊆ ((int‘𝐽)‘𝑦)))
2614, 25mpbid 221 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝐴})) → {𝐴} ⊆ ((int‘𝐽)‘𝑦))
27 snssg 4268 . . . . . . . . . 10 (𝐴𝑋 → (𝐴 ∈ ((int‘𝐽)‘𝑦) ↔ {𝐴} ⊆ ((int‘𝐽)‘𝑦)))
2827ad2antlr 759 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝐴})) → (𝐴 ∈ ((int‘𝐽)‘𝑦) ↔ {𝐴} ⊆ ((int‘𝐽)‘𝑦)))
2926, 28mpbird 246 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝐴})) → 𝐴 ∈ ((int‘𝐽)‘𝑦))
3021ntropn 20663 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝑦 𝐽) → ((int‘𝐽)‘𝑦) ∈ 𝐽)
3115, 23, 30syl2anc 691 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝐴})) → ((int‘𝐽)‘𝑦) ∈ 𝐽)
32 eleq2 2677 . . . . . . . . . . 11 (𝑥 = ((int‘𝐽)‘𝑦) → (𝐴𝑥𝐴 ∈ ((int‘𝐽)‘𝑦)))
33 eleq1 2676 . . . . . . . . . . 11 (𝑥 = ((int‘𝐽)‘𝑦) → (𝑥𝐹 ↔ ((int‘𝐽)‘𝑦) ∈ 𝐹))
3432, 33imbi12d 333 . . . . . . . . . 10 (𝑥 = ((int‘𝐽)‘𝑦) → ((𝐴𝑥𝑥𝐹) ↔ (𝐴 ∈ ((int‘𝐽)‘𝑦) → ((int‘𝐽)‘𝑦) ∈ 𝐹)))
3534rspcv 3278 . . . . . . . . 9 (((int‘𝐽)‘𝑦) ∈ 𝐽 → (∀𝑥𝐽 (𝐴𝑥𝑥𝐹) → (𝐴 ∈ ((int‘𝐽)‘𝑦) → ((int‘𝐽)‘𝑦) ∈ 𝐹)))
3631, 35syl 17 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝐴})) → (∀𝑥𝐽 (𝐴𝑥𝑥𝐹) → (𝐴 ∈ ((int‘𝐽)‘𝑦) → ((int‘𝐽)‘𝑦) ∈ 𝐹)))
3729, 36mpid 43 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝐴})) → (∀𝑥𝐽 (𝐴𝑥𝑥𝐹) → ((int‘𝐽)‘𝑦) ∈ 𝐹))
38 simpllr 795 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝐴})) → 𝐹 ∈ (Fil‘𝑋))
3921ntrss2 20671 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝑦 𝐽) → ((int‘𝐽)‘𝑦) ⊆ 𝑦)
4015, 23, 39syl2anc 691 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝐴})) → ((int‘𝐽)‘𝑦) ⊆ 𝑦)
4123, 18sseqtr4d 3605 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝐴})) → 𝑦𝑋)
42 filss 21467 . . . . . . . . . 10 ((𝐹 ∈ (Fil‘𝑋) ∧ (((int‘𝐽)‘𝑦) ∈ 𝐹𝑦𝑋 ∧ ((int‘𝐽)‘𝑦) ⊆ 𝑦)) → 𝑦𝐹)
43423exp2 1277 . . . . . . . . 9 (𝐹 ∈ (Fil‘𝑋) → (((int‘𝐽)‘𝑦) ∈ 𝐹 → (𝑦𝑋 → (((int‘𝐽)‘𝑦) ⊆ 𝑦𝑦𝐹))))
4443com24 93 . . . . . . . 8 (𝐹 ∈ (Fil‘𝑋) → (((int‘𝐽)‘𝑦) ⊆ 𝑦 → (𝑦𝑋 → (((int‘𝐽)‘𝑦) ∈ 𝐹𝑦𝐹))))
4538, 40, 41, 44syl3c 64 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝐴})) → (((int‘𝐽)‘𝑦) ∈ 𝐹𝑦𝐹))
4637, 45syld 46 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝐴})) → (∀𝑥𝐽 (𝐴𝑥𝑥𝐹) → 𝑦𝐹))
4746ralrimdva 2952 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) → (∀𝑥𝐽 (𝐴𝑥𝑥𝐹) → ∀𝑦 ∈ ((nei‘𝐽)‘{𝐴})𝑦𝐹))
4813, 47impbid 201 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) → (∀𝑦 ∈ ((nei‘𝐽)‘{𝐴})𝑦𝐹 ↔ ∀𝑥𝐽 (𝐴𝑥𝑥𝐹)))
492, 48syl5bb 271 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝐴𝑋) → (((nei‘𝐽)‘{𝐴}) ⊆ 𝐹 ↔ ∀𝑥𝐽 (𝐴𝑥𝑥𝐹)))
5049pm5.32da 671 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → ((𝐴𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹) ↔ (𝐴𝑋 ∧ ∀𝑥𝐽 (𝐴𝑥𝑥𝐹))))
511, 50bitrd 267 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐴 ∈ (𝐽 fLim 𝐹) ↔ (𝐴𝑋 ∧ ∀𝑥𝐽 (𝐴𝑥𝑥𝐹))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wral 2896  wss 3540  {csn 4125   cuni 4372  cfv 5804  (class class class)co 6549  Topctop 20517  TopOnctopon 20518  intcnt 20631  neicnei 20711  Filcfil 21459   fLim cflim 21548
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-fbas 19564  df-top 20521  df-topon 20523  df-ntr 20634  df-nei 20712  df-fil 21460  df-flim 21553
This theorem is referenced by:  fbflim  21590  flimrest  21597  flimsncls  21600  isflf  21607  cnpflfi  21613  flimfnfcls  21642  alexsublem  21658  cfilfcls  22880  iscmet3lem2  22898
  Copyright terms: Public domain W3C validator