MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnpflfi Structured version   Visualization version   GIF version

Theorem cnpflfi 21613
Description: Forward direction of cnpflf 21615. (Contributed by Mario Carneiro, 9-Apr-2015.) (Revised by Stefan O'Rear, 9-Aug-2015.)
Assertion
Ref Expression
cnpflfi ((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → (𝐹𝐴) ∈ ((𝐾 fLimf 𝐿)‘𝐹))

Proof of Theorem cnpflfi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2610 . . . . 5 𝐽 = 𝐽
2 eqid 2610 . . . . 5 𝐾 = 𝐾
31, 2cnpf 20861 . . . 4 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) → 𝐹: 𝐽 𝐾)
43adantl 481 . . 3 ((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐹: 𝐽 𝐾)
51flimelbas 21582 . . . 4 (𝐴 ∈ (𝐽 fLim 𝐿) → 𝐴 𝐽)
65adantr 480 . . 3 ((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐴 𝐽)
74, 6ffvelrnd 6268 . 2 ((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → (𝐹𝐴) ∈ 𝐾)
8 simplr 788 . . . . . 6 (((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝐾 ∧ (𝐹𝐴) ∈ 𝑥)) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴))
9 simprl 790 . . . . . 6 (((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝐾 ∧ (𝐹𝐴) ∈ 𝑥)) → 𝑥𝐾)
10 simprr 792 . . . . . 6 (((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝐾 ∧ (𝐹𝐴) ∈ 𝑥)) → (𝐹𝐴) ∈ 𝑥)
11 cnpimaex 20870 . . . . . 6 ((𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ∧ 𝑥𝐾 ∧ (𝐹𝐴) ∈ 𝑥) → ∃𝑦𝐽 (𝐴𝑦 ∧ (𝐹𝑦) ⊆ 𝑥))
128, 9, 10, 11syl3anc 1318 . . . . 5 (((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝐾 ∧ (𝐹𝐴) ∈ 𝑥)) → ∃𝑦𝐽 (𝐴𝑦 ∧ (𝐹𝑦) ⊆ 𝑥))
13 anass 679 . . . . . . 7 (((𝑦𝐽𝐴𝑦) ∧ (𝐹𝑦) ⊆ 𝑥) ↔ (𝑦𝐽 ∧ (𝐴𝑦 ∧ (𝐹𝑦) ⊆ 𝑥)))
14 simpl 472 . . . . . . . . . . . . 13 ((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐴 ∈ (𝐽 fLim 𝐿))
15 flimtop 21579 . . . . . . . . . . . . . . . 16 (𝐴 ∈ (𝐽 fLim 𝐿) → 𝐽 ∈ Top)
1615adantr 480 . . . . . . . . . . . . . . 15 ((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐽 ∈ Top)
171toptopon 20548 . . . . . . . . . . . . . . 15 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
1816, 17sylib 207 . . . . . . . . . . . . . 14 ((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐽 ∈ (TopOn‘ 𝐽))
191flimfil 21583 . . . . . . . . . . . . . . 15 (𝐴 ∈ (𝐽 fLim 𝐿) → 𝐿 ∈ (Fil‘ 𝐽))
2019adantr 480 . . . . . . . . . . . . . 14 ((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐿 ∈ (Fil‘ 𝐽))
21 flimopn 21589 . . . . . . . . . . . . . 14 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ 𝐿 ∈ (Fil‘ 𝐽)) → (𝐴 ∈ (𝐽 fLim 𝐿) ↔ (𝐴 𝐽 ∧ ∀𝑦𝐽 (𝐴𝑦𝑦𝐿))))
2218, 20, 21syl2anc 691 . . . . . . . . . . . . 13 ((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → (𝐴 ∈ (𝐽 fLim 𝐿) ↔ (𝐴 𝐽 ∧ ∀𝑦𝐽 (𝐴𝑦𝑦𝐿))))
2314, 22mpbid 221 . . . . . . . . . . . 12 ((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → (𝐴 𝐽 ∧ ∀𝑦𝐽 (𝐴𝑦𝑦𝐿)))
2423simprd 478 . . . . . . . . . . 11 ((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → ∀𝑦𝐽 (𝐴𝑦𝑦𝐿))
2524adantr 480 . . . . . . . . . 10 (((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝐾 ∧ (𝐹𝐴) ∈ 𝑥)) → ∀𝑦𝐽 (𝐴𝑦𝑦𝐿))
2625r19.21bi 2916 . . . . . . . . 9 ((((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝐾 ∧ (𝐹𝐴) ∈ 𝑥)) ∧ 𝑦𝐽) → (𝐴𝑦𝑦𝐿))
2726expimpd 627 . . . . . . . 8 (((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝐾 ∧ (𝐹𝐴) ∈ 𝑥)) → ((𝑦𝐽𝐴𝑦) → 𝑦𝐿))
2827anim1d 586 . . . . . . 7 (((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝐾 ∧ (𝐹𝐴) ∈ 𝑥)) → (((𝑦𝐽𝐴𝑦) ∧ (𝐹𝑦) ⊆ 𝑥) → (𝑦𝐿 ∧ (𝐹𝑦) ⊆ 𝑥)))
2913, 28syl5bir 232 . . . . . 6 (((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝐾 ∧ (𝐹𝐴) ∈ 𝑥)) → ((𝑦𝐽 ∧ (𝐴𝑦 ∧ (𝐹𝑦) ⊆ 𝑥)) → (𝑦𝐿 ∧ (𝐹𝑦) ⊆ 𝑥)))
3029reximdv2 2997 . . . . 5 (((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝐾 ∧ (𝐹𝐴) ∈ 𝑥)) → (∃𝑦𝐽 (𝐴𝑦 ∧ (𝐹𝑦) ⊆ 𝑥) → ∃𝑦𝐿 (𝐹𝑦) ⊆ 𝑥))
3112, 30mpd 15 . . . 4 (((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ (𝑥𝐾 ∧ (𝐹𝐴) ∈ 𝑥)) → ∃𝑦𝐿 (𝐹𝑦) ⊆ 𝑥)
3231expr 641 . . 3 (((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) ∧ 𝑥𝐾) → ((𝐹𝐴) ∈ 𝑥 → ∃𝑦𝐿 (𝐹𝑦) ⊆ 𝑥))
3332ralrimiva 2949 . 2 ((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → ∀𝑥𝐾 ((𝐹𝐴) ∈ 𝑥 → ∃𝑦𝐿 (𝐹𝑦) ⊆ 𝑥))
34 cnptop2 20857 . . . . 5 (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) → 𝐾 ∈ Top)
3534adantl 481 . . . 4 ((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐾 ∈ Top)
362toptopon 20548 . . . 4 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘ 𝐾))
3735, 36sylib 207 . . 3 ((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → 𝐾 ∈ (TopOn‘ 𝐾))
38 isflf 21607 . . 3 ((𝐾 ∈ (TopOn‘ 𝐾) ∧ 𝐿 ∈ (Fil‘ 𝐽) ∧ 𝐹: 𝐽 𝐾) → ((𝐹𝐴) ∈ ((𝐾 fLimf 𝐿)‘𝐹) ↔ ((𝐹𝐴) ∈ 𝐾 ∧ ∀𝑥𝐾 ((𝐹𝐴) ∈ 𝑥 → ∃𝑦𝐿 (𝐹𝑦) ⊆ 𝑥))))
3937, 20, 4, 38syl3anc 1318 . 2 ((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → ((𝐹𝐴) ∈ ((𝐾 fLimf 𝐿)‘𝐹) ↔ ((𝐹𝐴) ∈ 𝐾 ∧ ∀𝑥𝐾 ((𝐹𝐴) ∈ 𝑥 → ∃𝑦𝐿 (𝐹𝑦) ⊆ 𝑥))))
407, 33, 39mpbir2and 959 1 ((𝐴 ∈ (𝐽 fLim 𝐿) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) → (𝐹𝐴) ∈ ((𝐾 fLimf 𝐿)‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  wcel 1977  wral 2896  wrex 2897  wss 3540   cuni 4372  cima 5041  wf 5800  cfv 5804  (class class class)co 6549  Topctop 20517  TopOnctopon 20518   CnP ccnp 20839  Filcfil 21459   fLim cflim 21548   fLimf cflf 21549
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-map 7746  df-fbas 19564  df-fg 19565  df-top 20521  df-topon 20523  df-ntr 20634  df-nei 20712  df-cnp 20842  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554
This theorem is referenced by:  cnpflf2  21614  cnpflf  21615  flfcnp  21618  cnpfcfi  21654
  Copyright terms: Public domain W3C validator