MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnpflfi Structured version   Unicode version

Theorem cnpflfi 21012
Description: Forward direction of cnpflf 21014. (Contributed by Mario Carneiro, 9-Apr-2015.) (Revised by Stefan O'Rear, 9-Aug-2015.)
Assertion
Ref Expression
cnpflfi  |-  ( ( A  e.  ( J 
fLim  L )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  ->  ( F `  A )  e.  ( ( K  fLimf  L ) `
 F ) )

Proof of Theorem cnpflfi
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2422 . . . . 5  |-  U. J  =  U. J
2 eqid 2422 . . . . 5  |-  U. K  =  U. K
31, 2cnpf 20261 . . . 4  |-  ( F  e.  ( ( J  CnP  K ) `  A )  ->  F : U. J --> U. K
)
43adantl 467 . . 3  |-  ( ( A  e.  ( J 
fLim  L )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  ->  F : U. J --> U. K )
51flimelbas 20981 . . . 4  |-  ( A  e.  ( J  fLim  L )  ->  A  e.  U. J )
65adantr 466 . . 3  |-  ( ( A  e.  ( J 
fLim  L )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  ->  A  e.  U. J )
74, 6ffvelrnd 6038 . 2  |-  ( ( A  e.  ( J 
fLim  L )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  ->  ( F `  A )  e.  U. K )
8 simplr 760 . . . . . 6  |-  ( ( ( A  e.  ( J  fLim  L )  /\  F  e.  (
( J  CnP  K
) `  A )
)  /\  ( x  e.  K  /\  ( F `  A )  e.  x ) )  ->  F  e.  ( ( J  CnP  K ) `  A ) )
9 simprl 762 . . . . . 6  |-  ( ( ( A  e.  ( J  fLim  L )  /\  F  e.  (
( J  CnP  K
) `  A )
)  /\  ( x  e.  K  /\  ( F `  A )  e.  x ) )  ->  x  e.  K )
10 simprr 764 . . . . . 6  |-  ( ( ( A  e.  ( J  fLim  L )  /\  F  e.  (
( J  CnP  K
) `  A )
)  /\  ( x  e.  K  /\  ( F `  A )  e.  x ) )  -> 
( F `  A
)  e.  x )
11 cnpimaex 20270 . . . . . 6  |-  ( ( F  e.  ( ( J  CnP  K ) `
 A )  /\  x  e.  K  /\  ( F `  A )  e.  x )  ->  E. y  e.  J  ( A  e.  y  /\  ( F " y
)  C_  x )
)
128, 9, 10, 11syl3anc 1264 . . . . 5  |-  ( ( ( A  e.  ( J  fLim  L )  /\  F  e.  (
( J  CnP  K
) `  A )
)  /\  ( x  e.  K  /\  ( F `  A )  e.  x ) )  ->  E. y  e.  J  ( A  e.  y  /\  ( F " y
)  C_  x )
)
13 anass 653 . . . . . . 7  |-  ( ( ( y  e.  J  /\  A  e.  y
)  /\  ( F " y )  C_  x
)  <->  ( y  e.  J  /\  ( A  e.  y  /\  ( F " y )  C_  x ) ) )
14 simpl 458 . . . . . . . . . . . . 13  |-  ( ( A  e.  ( J 
fLim  L )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  ->  A  e.  ( J  fLim  L ) )
15 flimtop 20978 . . . . . . . . . . . . . . . 16  |-  ( A  e.  ( J  fLim  L )  ->  J  e.  Top )
1615adantr 466 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  ( J 
fLim  L )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  ->  J  e.  Top )
171toptopon 19946 . . . . . . . . . . . . . . 15  |-  ( J  e.  Top  <->  J  e.  (TopOn `  U. J ) )
1816, 17sylib 199 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ( J 
fLim  L )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  ->  J  e.  (TopOn `  U. J ) )
191flimfil 20982 . . . . . . . . . . . . . . 15  |-  ( A  e.  ( J  fLim  L )  ->  L  e.  ( Fil `  U. J
) )
2019adantr 466 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ( J 
fLim  L )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  ->  L  e.  ( Fil `  U. J
) )
21 flimopn 20988 . . . . . . . . . . . . . 14  |-  ( ( J  e.  (TopOn `  U. J )  /\  L  e.  ( Fil `  U. J ) )  -> 
( A  e.  ( J  fLim  L )  <->  ( A  e.  U. J  /\  A. y  e.  J  ( A  e.  y  ->  y  e.  L ) ) ) )
2218, 20, 21syl2anc 665 . . . . . . . . . . . . 13  |-  ( ( A  e.  ( J 
fLim  L )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  ->  ( A  e.  ( J  fLim  L
)  <->  ( A  e. 
U. J  /\  A. y  e.  J  ( A  e.  y  ->  y  e.  L ) ) ) )
2314, 22mpbid 213 . . . . . . . . . . . 12  |-  ( ( A  e.  ( J 
fLim  L )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  ->  ( A  e.  U. J  /\  A. y  e.  J  ( A  e.  y  ->  y  e.  L ) ) )
2423simprd 464 . . . . . . . . . . 11  |-  ( ( A  e.  ( J 
fLim  L )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  ->  A. y  e.  J  ( A  e.  y  ->  y  e.  L ) )
2524adantr 466 . . . . . . . . . 10  |-  ( ( ( A  e.  ( J  fLim  L )  /\  F  e.  (
( J  CnP  K
) `  A )
)  /\  ( x  e.  K  /\  ( F `  A )  e.  x ) )  ->  A. y  e.  J  ( A  e.  y  ->  y  e.  L ) )
2625r19.21bi 2791 . . . . . . . . 9  |-  ( ( ( ( A  e.  ( J  fLim  L
)  /\  F  e.  ( ( J  CnP  K ) `  A ) )  /\  ( x  e.  K  /\  ( F `  A )  e.  x ) )  /\  y  e.  J )  ->  ( A  e.  y  ->  y  e.  L
) )
2726expimpd 606 . . . . . . . 8  |-  ( ( ( A  e.  ( J  fLim  L )  /\  F  e.  (
( J  CnP  K
) `  A )
)  /\  ( x  e.  K  /\  ( F `  A )  e.  x ) )  -> 
( ( y  e.  J  /\  A  e.  y )  ->  y  e.  L ) )
2827anim1d 566 . . . . . . 7  |-  ( ( ( A  e.  ( J  fLim  L )  /\  F  e.  (
( J  CnP  K
) `  A )
)  /\  ( x  e.  K  /\  ( F `  A )  e.  x ) )  -> 
( ( ( y  e.  J  /\  A  e.  y )  /\  ( F " y )  C_  x )  ->  (
y  e.  L  /\  ( F " y ) 
C_  x ) ) )
2913, 28syl5bir 221 . . . . . 6  |-  ( ( ( A  e.  ( J  fLim  L )  /\  F  e.  (
( J  CnP  K
) `  A )
)  /\  ( x  e.  K  /\  ( F `  A )  e.  x ) )  -> 
( ( y  e.  J  /\  ( A  e.  y  /\  ( F " y )  C_  x ) )  -> 
( y  e.  L  /\  ( F " y
)  C_  x )
) )
3029reximdv2 2893 . . . . 5  |-  ( ( ( A  e.  ( J  fLim  L )  /\  F  e.  (
( J  CnP  K
) `  A )
)  /\  ( x  e.  K  /\  ( F `  A )  e.  x ) )  -> 
( E. y  e.  J  ( A  e.  y  /\  ( F
" y )  C_  x )  ->  E. y  e.  L  ( F " y )  C_  x
) )
3112, 30mpd 15 . . . 4  |-  ( ( ( A  e.  ( J  fLim  L )  /\  F  e.  (
( J  CnP  K
) `  A )
)  /\  ( x  e.  K  /\  ( F `  A )  e.  x ) )  ->  E. y  e.  L  ( F " y ) 
C_  x )
3231expr 618 . . 3  |-  ( ( ( A  e.  ( J  fLim  L )  /\  F  e.  (
( J  CnP  K
) `  A )
)  /\  x  e.  K )  ->  (
( F `  A
)  e.  x  ->  E. y  e.  L  ( F " y ) 
C_  x ) )
3332ralrimiva 2836 . 2  |-  ( ( A  e.  ( J 
fLim  L )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  ->  A. x  e.  K  ( ( F `  A )  e.  x  ->  E. y  e.  L  ( F " y )  C_  x
) )
34 cnptop2 20257 . . . . 5  |-  ( F  e.  ( ( J  CnP  K ) `  A )  ->  K  e.  Top )
3534adantl 467 . . . 4  |-  ( ( A  e.  ( J 
fLim  L )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  ->  K  e.  Top )
362toptopon 19946 . . . 4  |-  ( K  e.  Top  <->  K  e.  (TopOn `  U. K ) )
3735, 36sylib 199 . . 3  |-  ( ( A  e.  ( J 
fLim  L )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  ->  K  e.  (TopOn `  U. K ) )
38 isflf 21006 . . 3  |-  ( ( K  e.  (TopOn `  U. K )  /\  L  e.  ( Fil `  U. J )  /\  F : U. J --> U. K
)  ->  ( ( F `  A )  e.  ( ( K  fLimf  L ) `  F )  <-> 
( ( F `  A )  e.  U. K  /\  A. x  e.  K  ( ( F `
 A )  e.  x  ->  E. y  e.  L  ( F " y )  C_  x
) ) ) )
3937, 20, 4, 38syl3anc 1264 . 2  |-  ( ( A  e.  ( J 
fLim  L )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  ->  ( ( F `  A )  e.  ( ( K  fLimf  L ) `  F )  <-> 
( ( F `  A )  e.  U. K  /\  A. x  e.  K  ( ( F `
 A )  e.  x  ->  E. y  e.  L  ( F " y )  C_  x
) ) ) )
407, 33, 39mpbir2and 930 1  |-  ( ( A  e.  ( J 
fLim  L )  /\  F  e.  ( ( J  CnP  K ) `  A ) )  ->  ( F `  A )  e.  ( ( K  fLimf  L ) `
 F ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    e. wcel 1872   A.wral 2771   E.wrex 2772    C_ wss 3436   U.cuni 4219   "cima 4856   -->wf 5597   ` cfv 5601  (class class class)co 6305   Topctop 19915  TopOnctopon 19916    CnP ccnp 20239   Filcfil 20858    fLim cflim 20947    fLimf cflf 20948
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2057  ax-ext 2401  ax-rep 4536  ax-sep 4546  ax-nul 4555  ax-pow 4602  ax-pr 4660  ax-un 6597
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2273  df-mo 2274  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2568  df-ne 2616  df-nel 2617  df-ral 2776  df-rex 2777  df-reu 2778  df-rab 2780  df-v 3082  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-nul 3762  df-if 3912  df-pw 3983  df-sn 3999  df-pr 4001  df-op 4005  df-uni 4220  df-iun 4301  df-br 4424  df-opab 4483  df-mpt 4484  df-id 4768  df-xp 4859  df-rel 4860  df-cnv 4861  df-co 4862  df-dm 4863  df-rn 4864  df-res 4865  df-ima 4866  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-1st 6807  df-2nd 6808  df-map 7485  df-fbas 18966  df-fg 18967  df-top 19919  df-topon 19921  df-ntr 20033  df-nei 20112  df-cnp 20242  df-fil 20859  df-fm 20951  df-flim 20952  df-flf 20953
This theorem is referenced by:  cnpflf2  21013  cnpflf  21014  flfcnp  21017  cnpfcfi  21053
  Copyright terms: Public domain W3C validator