MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flimopn Structured version   Unicode version

Theorem flimopn 20454
Description: The condition for being a limit point of a filter still holds if one only considers open neighborhoods. (Contributed by Jeff Hankins, 4-Sep-2009.) (Proof shortened by Mario Carneiro, 9-Apr-2015.)
Assertion
Ref Expression
flimopn  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
) )  ->  ( A  e.  ( J  fLim  F )  <->  ( A  e.  X  /\  A. x  e.  J  ( A  e.  x  ->  x  e.  F ) ) ) )
Distinct variable groups:    x, A    x, F    x, J    x, X

Proof of Theorem flimopn
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 elflim 20450 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
) )  ->  ( A  e.  ( J  fLim  F )  <->  ( A  e.  X  /\  (
( nei `  J
) `  { A } )  C_  F
) ) )
2 dfss3 3479 . . . 4  |-  ( ( ( nei `  J
) `  { A } )  C_  F  <->  A. y  e.  ( ( nei `  J ) `
 { A }
) y  e.  F
)
3 topontop 19405 . . . . . . . . . . 11  |-  ( J  e.  (TopOn `  X
)  ->  J  e.  Top )
43ad2antrr 725 . . . . . . . . . 10  |-  ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
) )  /\  A  e.  X )  ->  J  e.  Top )
5 opnneip 19598 . . . . . . . . . . 11  |-  ( ( J  e.  Top  /\  x  e.  J  /\  A  e.  x )  ->  x  e.  ( ( nei `  J ) `
 { A }
) )
653expb 1198 . . . . . . . . . 10  |-  ( ( J  e.  Top  /\  ( x  e.  J  /\  A  e.  x
) )  ->  x  e.  ( ( nei `  J
) `  { A } ) )
74, 6sylan 471 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X ) )  /\  A  e.  X
)  /\  ( x  e.  J  /\  A  e.  x ) )  ->  x  e.  ( ( nei `  J ) `  { A } ) )
8 eleq1 2515 . . . . . . . . . 10  |-  ( y  =  x  ->  (
y  e.  F  <->  x  e.  F ) )
98rspcv 3192 . . . . . . . . 9  |-  ( x  e.  ( ( nei `  J ) `  { A } )  ->  ( A. y  e.  (
( nei `  J
) `  { A } ) y  e.  F  ->  x  e.  F ) )
107, 9syl 16 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X ) )  /\  A  e.  X
)  /\  ( x  e.  J  /\  A  e.  x ) )  -> 
( A. y  e.  ( ( nei `  J
) `  { A } ) y  e.  F  ->  x  e.  F ) )
1110expr 615 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X ) )  /\  A  e.  X
)  /\  x  e.  J )  ->  ( A  e.  x  ->  ( A. y  e.  ( ( nei `  J
) `  { A } ) y  e.  F  ->  x  e.  F ) ) )
1211com23 78 . . . . . 6  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X ) )  /\  A  e.  X
)  /\  x  e.  J )  ->  ( A. y  e.  (
( nei `  J
) `  { A } ) y  e.  F  ->  ( A  e.  x  ->  x  e.  F ) ) )
1312ralrimdva 2861 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
) )  /\  A  e.  X )  ->  ( A. y  e.  (
( nei `  J
) `  { A } ) y  e.  F  ->  A. x  e.  J  ( A  e.  x  ->  x  e.  F ) ) )
14 simpr 461 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X ) )  /\  A  e.  X
)  /\  y  e.  ( ( nei `  J
) `  { A } ) )  -> 
y  e.  ( ( nei `  J ) `
 { A }
) )
153ad3antrrr 729 . . . . . . . . . . 11  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X ) )  /\  A  e.  X
)  /\  y  e.  ( ( nei `  J
) `  { A } ) )  ->  J  e.  Top )
16 simplr 755 . . . . . . . . . . . . 13  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X ) )  /\  A  e.  X
)  /\  y  e.  ( ( nei `  J
) `  { A } ) )  ->  A  e.  X )
17 toponuni 19406 . . . . . . . . . . . . . 14  |-  ( J  e.  (TopOn `  X
)  ->  X  =  U. J )
1817ad3antrrr 729 . . . . . . . . . . . . 13  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X ) )  /\  A  e.  X
)  /\  y  e.  ( ( nei `  J
) `  { A } ) )  ->  X  =  U. J )
1916, 18eleqtrd 2533 . . . . . . . . . . . 12  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X ) )  /\  A  e.  X
)  /\  y  e.  ( ( nei `  J
) `  { A } ) )  ->  A  e.  U. J )
2019snssd 4160 . . . . . . . . . . 11  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X ) )  /\  A  e.  X
)  /\  y  e.  ( ( nei `  J
) `  { A } ) )  ->  { A }  C_  U. J
)
21 eqid 2443 . . . . . . . . . . . . 13  |-  U. J  =  U. J
2221neii1 19585 . . . . . . . . . . . 12  |-  ( ( J  e.  Top  /\  y  e.  ( ( nei `  J ) `  { A } ) )  ->  y  C_  U. J
)
234, 22sylan 471 . . . . . . . . . . 11  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X ) )  /\  A  e.  X
)  /\  y  e.  ( ( nei `  J
) `  { A } ) )  -> 
y  C_  U. J )
2421neiint 19583 . . . . . . . . . . 11  |-  ( ( J  e.  Top  /\  { A }  C_  U. J  /\  y  C_  U. J
)  ->  ( y  e.  ( ( nei `  J
) `  { A } )  <->  { A }  C_  ( ( int `  J ) `  y
) ) )
2515, 20, 23, 24syl3anc 1229 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X ) )  /\  A  e.  X
)  /\  y  e.  ( ( nei `  J
) `  { A } ) )  -> 
( y  e.  ( ( nei `  J
) `  { A } )  <->  { A }  C_  ( ( int `  J ) `  y
) ) )
2614, 25mpbid 210 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X ) )  /\  A  e.  X
)  /\  y  e.  ( ( nei `  J
) `  { A } ) )  ->  { A }  C_  (
( int `  J
) `  y )
)
27 snssg 4148 . . . . . . . . . 10  |-  ( A  e.  X  ->  ( A  e.  ( ( int `  J ) `  y )  <->  { A }  C_  ( ( int `  J ) `  y
) ) )
2827ad2antlr 726 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X ) )  /\  A  e.  X
)  /\  y  e.  ( ( nei `  J
) `  { A } ) )  -> 
( A  e.  ( ( int `  J
) `  y )  <->  { A }  C_  (
( int `  J
) `  y )
) )
2926, 28mpbird 232 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X ) )  /\  A  e.  X
)  /\  y  e.  ( ( nei `  J
) `  { A } ) )  ->  A  e.  ( ( int `  J ) `  y ) )
3021ntropn 19528 . . . . . . . . . 10  |-  ( ( J  e.  Top  /\  y  C_  U. J )  ->  ( ( int `  J ) `  y
)  e.  J )
3115, 23, 30syl2anc 661 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X ) )  /\  A  e.  X
)  /\  y  e.  ( ( nei `  J
) `  { A } ) )  -> 
( ( int `  J
) `  y )  e.  J )
32 eleq2 2516 . . . . . . . . . . 11  |-  ( x  =  ( ( int `  J ) `  y
)  ->  ( A  e.  x  <->  A  e.  (
( int `  J
) `  y )
) )
33 eleq1 2515 . . . . . . . . . . 11  |-  ( x  =  ( ( int `  J ) `  y
)  ->  ( x  e.  F  <->  ( ( int `  J ) `  y
)  e.  F ) )
3432, 33imbi12d 320 . . . . . . . . . 10  |-  ( x  =  ( ( int `  J ) `  y
)  ->  ( ( A  e.  x  ->  x  e.  F )  <->  ( A  e.  ( ( int `  J
) `  y )  ->  ( ( int `  J
) `  y )  e.  F ) ) )
3534rspcv 3192 . . . . . . . . 9  |-  ( ( ( int `  J
) `  y )  e.  J  ->  ( A. x  e.  J  ( A  e.  x  ->  x  e.  F )  -> 
( A  e.  ( ( int `  J
) `  y )  ->  ( ( int `  J
) `  y )  e.  F ) ) )
3631, 35syl 16 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X ) )  /\  A  e.  X
)  /\  y  e.  ( ( nei `  J
) `  { A } ) )  -> 
( A. x  e.  J  ( A  e.  x  ->  x  e.  F )  ->  ( A  e.  ( ( int `  J ) `  y )  ->  (
( int `  J
) `  y )  e.  F ) ) )
3729, 36mpid 41 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X ) )  /\  A  e.  X
)  /\  y  e.  ( ( nei `  J
) `  { A } ) )  -> 
( A. x  e.  J  ( A  e.  x  ->  x  e.  F )  ->  (
( int `  J
) `  y )  e.  F ) )
38 simpllr 760 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X ) )  /\  A  e.  X
)  /\  y  e.  ( ( nei `  J
) `  { A } ) )  ->  F  e.  ( Fil `  X ) )
3921ntrss2 19536 . . . . . . . . 9  |-  ( ( J  e.  Top  /\  y  C_  U. J )  ->  ( ( int `  J ) `  y
)  C_  y )
4015, 23, 39syl2anc 661 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X ) )  /\  A  e.  X
)  /\  y  e.  ( ( nei `  J
) `  { A } ) )  -> 
( ( int `  J
) `  y )  C_  y )
4123, 18sseqtr4d 3526 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X ) )  /\  A  e.  X
)  /\  y  e.  ( ( nei `  J
) `  { A } ) )  -> 
y  C_  X )
42 filss 20332 . . . . . . . . . 10  |-  ( ( F  e.  ( Fil `  X )  /\  (
( ( int `  J
) `  y )  e.  F  /\  y  C_  X  /\  ( ( int `  J ) `
 y )  C_  y ) )  -> 
y  e.  F )
43423exp2 1215 . . . . . . . . 9  |-  ( F  e.  ( Fil `  X
)  ->  ( (
( int `  J
) `  y )  e.  F  ->  ( y 
C_  X  ->  (
( ( int `  J
) `  y )  C_  y  ->  y  e.  F ) ) ) )
4443com24 87 . . . . . . . 8  |-  ( F  e.  ( Fil `  X
)  ->  ( (
( int `  J
) `  y )  C_  y  ->  ( y  C_  X  ->  ( (
( int `  J
) `  y )  e.  F  ->  y  e.  F ) ) ) )
4538, 40, 41, 44syl3c 61 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X ) )  /\  A  e.  X
)  /\  y  e.  ( ( nei `  J
) `  { A } ) )  -> 
( ( ( int `  J ) `  y
)  e.  F  -> 
y  e.  F ) )
4637, 45syld 44 . . . . . 6  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X ) )  /\  A  e.  X
)  /\  y  e.  ( ( nei `  J
) `  { A } ) )  -> 
( A. x  e.  J  ( A  e.  x  ->  x  e.  F )  ->  y  e.  F ) )
4746ralrimdva 2861 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
) )  /\  A  e.  X )  ->  ( A. x  e.  J  ( A  e.  x  ->  x  e.  F )  ->  A. y  e.  ( ( nei `  J
) `  { A } ) y  e.  F ) )
4813, 47impbid 191 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
) )  /\  A  e.  X )  ->  ( A. y  e.  (
( nei `  J
) `  { A } ) y  e.  F  <->  A. x  e.  J  ( A  e.  x  ->  x  e.  F ) ) )
492, 48syl5bb 257 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
) )  /\  A  e.  X )  ->  (
( ( nei `  J
) `  { A } )  C_  F  <->  A. x  e.  J  ( A  e.  x  ->  x  e.  F )
) )
5049pm5.32da 641 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
) )  ->  (
( A  e.  X  /\  ( ( nei `  J
) `  { A } )  C_  F
)  <->  ( A  e.  X  /\  A. x  e.  J  ( A  e.  x  ->  x  e.  F ) ) ) )
511, 50bitrd 253 1  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
) )  ->  ( A  e.  ( J  fLim  F )  <->  ( A  e.  X  /\  A. x  e.  J  ( A  e.  x  ->  x  e.  F ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1383    e. wcel 1804   A.wral 2793    C_ wss 3461   {csn 4014   U.cuni 4234   ` cfv 5578  (class class class)co 6281   Topctop 19372  TopOnctopon 19373   intcnt 19496   neicnei 19576   Filcfil 20324    fLim cflim 20413
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-rep 4548  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-nel 2641  df-ral 2798  df-rex 2799  df-reu 2800  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-op 4021  df-uni 4235  df-iun 4317  df-br 4438  df-opab 4496  df-mpt 4497  df-id 4785  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-ov 6284  df-oprab 6285  df-mpt2 6286  df-fbas 18395  df-top 19377  df-topon 19380  df-ntr 19499  df-nei 19577  df-fil 20325  df-flim 20418
This theorem is referenced by:  fbflim  20455  flimrest  20462  flimsncls  20465  isflf  20472  cnpflfi  20478  flimfnfcls  20507  alexsublem  20522  cfilfcls  21691  iscmet3lem2  21709
  Copyright terms: Public domain W3C validator