MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin23lem28 Structured version   Visualization version   GIF version

Theorem fin23lem28 9045
Description: Lemma for fin23 9094. The residual is also one-to-one. This preserves the induction invariant. (Contributed by Stefan O'Rear, 2-Nov-2014.)
Hypotheses
Ref Expression
fin23lem.a 𝑈 = seq𝜔((𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡𝑖) ∩ 𝑢))), ran 𝑡)
fin23lem17.f 𝐹 = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔𝑚 ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎𝑥) → ran 𝑎 ∈ ran 𝑎)}
fin23lem.b 𝑃 = {𝑣 ∈ ω ∣ ran 𝑈 ⊆ (𝑡𝑣)}
fin23lem.c 𝑄 = (𝑤 ∈ ω ↦ (𝑥𝑃 (𝑥𝑃) ≈ 𝑤))
fin23lem.d 𝑅 = (𝑤 ∈ ω ↦ (𝑥 ∈ (ω ∖ 𝑃)(𝑥 ∩ (ω ∖ 𝑃)) ≈ 𝑤))
fin23lem.e 𝑍 = if(𝑃 ∈ Fin, (𝑡𝑅), ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄))
Assertion
Ref Expression
fin23lem28 (𝑡:ω–1-1→V → 𝑍:ω–1-1→V)
Distinct variable groups:   𝑔,𝑖,𝑡,𝑢,𝑣,𝑥,𝑧,𝑎   𝐹,𝑎,𝑡   𝑤,𝑎,𝑥,𝑧,𝑃   𝑣,𝑎,𝑅,𝑖,𝑢   𝑈,𝑎,𝑖,𝑢,𝑣,𝑧   𝑍,𝑎   𝑔,𝑎
Allowed substitution hints:   𝑃(𝑣,𝑢,𝑡,𝑔,𝑖)   𝑄(𝑥,𝑧,𝑤,𝑣,𝑢,𝑡,𝑔,𝑖,𝑎)   𝑅(𝑥,𝑧,𝑤,𝑡,𝑔)   𝑈(𝑥,𝑤,𝑡,𝑔)   𝐹(𝑥,𝑧,𝑤,𝑣,𝑢,𝑔,𝑖)   𝑍(𝑥,𝑧,𝑤,𝑣,𝑢,𝑡,𝑔,𝑖)

Proof of Theorem fin23lem28
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 fin23lem.e . . 3 𝑍 = if(𝑃 ∈ Fin, (𝑡𝑅), ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄))
2 eqif 4076 . . 3 (𝑍 = if(𝑃 ∈ Fin, (𝑡𝑅), ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄)) ↔ ((𝑃 ∈ Fin ∧ 𝑍 = (𝑡𝑅)) ∨ (¬ 𝑃 ∈ Fin ∧ 𝑍 = ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄))))
31, 2mpbi 219 . 2 ((𝑃 ∈ Fin ∧ 𝑍 = (𝑡𝑅)) ∨ (¬ 𝑃 ∈ Fin ∧ 𝑍 = ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄)))
4 difss 3699 . . . . . . . . 9 (ω ∖ 𝑃) ⊆ ω
5 ominf 8057 . . . . . . . . . 10 ¬ ω ∈ Fin
6 fin23lem.b . . . . . . . . . . . . . 14 𝑃 = {𝑣 ∈ ω ∣ ran 𝑈 ⊆ (𝑡𝑣)}
7 ssrab2 3650 . . . . . . . . . . . . . 14 {𝑣 ∈ ω ∣ ran 𝑈 ⊆ (𝑡𝑣)} ⊆ ω
86, 7eqsstri 3598 . . . . . . . . . . . . 13 𝑃 ⊆ ω
9 undif 4001 . . . . . . . . . . . . 13 (𝑃 ⊆ ω ↔ (𝑃 ∪ (ω ∖ 𝑃)) = ω)
108, 9mpbi 219 . . . . . . . . . . . 12 (𝑃 ∪ (ω ∖ 𝑃)) = ω
11 unfi 8112 . . . . . . . . . . . 12 ((𝑃 ∈ Fin ∧ (ω ∖ 𝑃) ∈ Fin) → (𝑃 ∪ (ω ∖ 𝑃)) ∈ Fin)
1210, 11syl5eqelr 2693 . . . . . . . . . . 11 ((𝑃 ∈ Fin ∧ (ω ∖ 𝑃) ∈ Fin) → ω ∈ Fin)
1312ex 449 . . . . . . . . . 10 (𝑃 ∈ Fin → ((ω ∖ 𝑃) ∈ Fin → ω ∈ Fin))
145, 13mtoi 189 . . . . . . . . 9 (𝑃 ∈ Fin → ¬ (ω ∖ 𝑃) ∈ Fin)
15 fin23lem.d . . . . . . . . . 10 𝑅 = (𝑤 ∈ ω ↦ (𝑥 ∈ (ω ∖ 𝑃)(𝑥 ∩ (ω ∖ 𝑃)) ≈ 𝑤))
1615fin23lem22 9032 . . . . . . . . 9 (((ω ∖ 𝑃) ⊆ ω ∧ ¬ (ω ∖ 𝑃) ∈ Fin) → 𝑅:ω–1-1-onto→(ω ∖ 𝑃))
174, 14, 16sylancr 694 . . . . . . . 8 (𝑃 ∈ Fin → 𝑅:ω–1-1-onto→(ω ∖ 𝑃))
1817adantl 481 . . . . . . 7 ((𝑡:ω–1-1→V ∧ 𝑃 ∈ Fin) → 𝑅:ω–1-1-onto→(ω ∖ 𝑃))
19 f1of1 6049 . . . . . . 7 (𝑅:ω–1-1-onto→(ω ∖ 𝑃) → 𝑅:ω–1-1→(ω ∖ 𝑃))
20 f1ss 6019 . . . . . . . 8 ((𝑅:ω–1-1→(ω ∖ 𝑃) ∧ (ω ∖ 𝑃) ⊆ ω) → 𝑅:ω–1-1→ω)
214, 20mpan2 703 . . . . . . 7 (𝑅:ω–1-1→(ω ∖ 𝑃) → 𝑅:ω–1-1→ω)
2218, 19, 213syl 18 . . . . . 6 ((𝑡:ω–1-1→V ∧ 𝑃 ∈ Fin) → 𝑅:ω–1-1→ω)
23 f1co 6023 . . . . . 6 ((𝑡:ω–1-1→V ∧ 𝑅:ω–1-1→ω) → (𝑡𝑅):ω–1-1→V)
2422, 23syldan 486 . . . . 5 ((𝑡:ω–1-1→V ∧ 𝑃 ∈ Fin) → (𝑡𝑅):ω–1-1→V)
25 f1eq1 6009 . . . . 5 (𝑍 = (𝑡𝑅) → (𝑍:ω–1-1→V ↔ (𝑡𝑅):ω–1-1→V))
2624, 25syl5ibrcom 236 . . . 4 ((𝑡:ω–1-1→V ∧ 𝑃 ∈ Fin) → (𝑍 = (𝑡𝑅) → 𝑍:ω–1-1→V))
2726impr 647 . . 3 ((𝑡:ω–1-1→V ∧ (𝑃 ∈ Fin ∧ 𝑍 = (𝑡𝑅))) → 𝑍:ω–1-1→V)
28 fvex 6113 . . . . . . . . . . 11 (𝑡𝑧) ∈ V
29 difexg 4735 . . . . . . . . . . 11 ((𝑡𝑧) ∈ V → ((𝑡𝑧) ∖ ran 𝑈) ∈ V)
3028, 29ax-mp 5 . . . . . . . . . 10 ((𝑡𝑧) ∖ ran 𝑈) ∈ V
3130rgenw 2908 . . . . . . . . 9 𝑧𝑃 ((𝑡𝑧) ∖ ran 𝑈) ∈ V
32 eqid 2610 . . . . . . . . . 10 (𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) = (𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈))
3332fmpt 6289 . . . . . . . . 9 (∀𝑧𝑃 ((𝑡𝑧) ∖ ran 𝑈) ∈ V ↔ (𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)):𝑃⟶V)
3431, 33mpbi 219 . . . . . . . 8 (𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)):𝑃⟶V
3534a1i 11 . . . . . . 7 (𝑡:ω–1-1→V → (𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)):𝑃⟶V)
36 fveq2 6103 . . . . . . . . . . . . 13 (𝑧 = 𝑎 → (𝑡𝑧) = (𝑡𝑎))
3736difeq1d 3689 . . . . . . . . . . . 12 (𝑧 = 𝑎 → ((𝑡𝑧) ∖ ran 𝑈) = ((𝑡𝑎) ∖ ran 𝑈))
38 fvex 6113 . . . . . . . . . . . . 13 (𝑡𝑎) ∈ V
39 difexg 4735 . . . . . . . . . . . . 13 ((𝑡𝑎) ∈ V → ((𝑡𝑎) ∖ ran 𝑈) ∈ V)
4038, 39ax-mp 5 . . . . . . . . . . . 12 ((𝑡𝑎) ∖ ran 𝑈) ∈ V
4137, 32, 40fvmpt 6191 . . . . . . . . . . 11 (𝑎𝑃 → ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈))‘𝑎) = ((𝑡𝑎) ∖ ran 𝑈))
4241ad2antrl 760 . . . . . . . . . 10 ((𝑡:ω–1-1→V ∧ (𝑎𝑃𝑏𝑃)) → ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈))‘𝑎) = ((𝑡𝑎) ∖ ran 𝑈))
43 fveq2 6103 . . . . . . . . . . . . 13 (𝑧 = 𝑏 → (𝑡𝑧) = (𝑡𝑏))
4443difeq1d 3689 . . . . . . . . . . . 12 (𝑧 = 𝑏 → ((𝑡𝑧) ∖ ran 𝑈) = ((𝑡𝑏) ∖ ran 𝑈))
45 fvex 6113 . . . . . . . . . . . . 13 (𝑡𝑏) ∈ V
46 difexg 4735 . . . . . . . . . . . . 13 ((𝑡𝑏) ∈ V → ((𝑡𝑏) ∖ ran 𝑈) ∈ V)
4745, 46ax-mp 5 . . . . . . . . . . . 12 ((𝑡𝑏) ∖ ran 𝑈) ∈ V
4844, 32, 47fvmpt 6191 . . . . . . . . . . 11 (𝑏𝑃 → ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈))‘𝑏) = ((𝑡𝑏) ∖ ran 𝑈))
4948ad2antll 761 . . . . . . . . . 10 ((𝑡:ω–1-1→V ∧ (𝑎𝑃𝑏𝑃)) → ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈))‘𝑏) = ((𝑡𝑏) ∖ ran 𝑈))
5042, 49eqeq12d 2625 . . . . . . . . 9 ((𝑡:ω–1-1→V ∧ (𝑎𝑃𝑏𝑃)) → (((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈))‘𝑎) = ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈))‘𝑏) ↔ ((𝑡𝑎) ∖ ran 𝑈) = ((𝑡𝑏) ∖ ran 𝑈)))
51 uneq2 3723 . . . . . . . . . . 11 (((𝑡𝑎) ∖ ran 𝑈) = ((𝑡𝑏) ∖ ran 𝑈) → ( ran 𝑈 ∪ ((𝑡𝑎) ∖ ran 𝑈)) = ( ran 𝑈 ∪ ((𝑡𝑏) ∖ ran 𝑈)))
52 fveq2 6103 . . . . . . . . . . . . . . . . 17 (𝑣 = 𝑎 → (𝑡𝑣) = (𝑡𝑎))
5352sseq2d 3596 . . . . . . . . . . . . . . . 16 (𝑣 = 𝑎 → ( ran 𝑈 ⊆ (𝑡𝑣) ↔ ran 𝑈 ⊆ (𝑡𝑎)))
5453, 6elrab2 3333 . . . . . . . . . . . . . . 15 (𝑎𝑃 ↔ (𝑎 ∈ ω ∧ ran 𝑈 ⊆ (𝑡𝑎)))
5554simprbi 479 . . . . . . . . . . . . . 14 (𝑎𝑃 ran 𝑈 ⊆ (𝑡𝑎))
5655ad2antrl 760 . . . . . . . . . . . . 13 ((𝑡:ω–1-1→V ∧ (𝑎𝑃𝑏𝑃)) → ran 𝑈 ⊆ (𝑡𝑎))
57 undif 4001 . . . . . . . . . . . . 13 ( ran 𝑈 ⊆ (𝑡𝑎) ↔ ( ran 𝑈 ∪ ((𝑡𝑎) ∖ ran 𝑈)) = (𝑡𝑎))
5856, 57sylib 207 . . . . . . . . . . . 12 ((𝑡:ω–1-1→V ∧ (𝑎𝑃𝑏𝑃)) → ( ran 𝑈 ∪ ((𝑡𝑎) ∖ ran 𝑈)) = (𝑡𝑎))
59 fveq2 6103 . . . . . . . . . . . . . . . . 17 (𝑣 = 𝑏 → (𝑡𝑣) = (𝑡𝑏))
6059sseq2d 3596 . . . . . . . . . . . . . . . 16 (𝑣 = 𝑏 → ( ran 𝑈 ⊆ (𝑡𝑣) ↔ ran 𝑈 ⊆ (𝑡𝑏)))
6160, 6elrab2 3333 . . . . . . . . . . . . . . 15 (𝑏𝑃 ↔ (𝑏 ∈ ω ∧ ran 𝑈 ⊆ (𝑡𝑏)))
6261simprbi 479 . . . . . . . . . . . . . 14 (𝑏𝑃 ran 𝑈 ⊆ (𝑡𝑏))
6362ad2antll 761 . . . . . . . . . . . . 13 ((𝑡:ω–1-1→V ∧ (𝑎𝑃𝑏𝑃)) → ran 𝑈 ⊆ (𝑡𝑏))
64 undif 4001 . . . . . . . . . . . . 13 ( ran 𝑈 ⊆ (𝑡𝑏) ↔ ( ran 𝑈 ∪ ((𝑡𝑏) ∖ ran 𝑈)) = (𝑡𝑏))
6563, 64sylib 207 . . . . . . . . . . . 12 ((𝑡:ω–1-1→V ∧ (𝑎𝑃𝑏𝑃)) → ( ran 𝑈 ∪ ((𝑡𝑏) ∖ ran 𝑈)) = (𝑡𝑏))
6658, 65eqeq12d 2625 . . . . . . . . . . 11 ((𝑡:ω–1-1→V ∧ (𝑎𝑃𝑏𝑃)) → (( ran 𝑈 ∪ ((𝑡𝑎) ∖ ran 𝑈)) = ( ran 𝑈 ∪ ((𝑡𝑏) ∖ ran 𝑈)) ↔ (𝑡𝑎) = (𝑡𝑏)))
6751, 66syl5ib 233 . . . . . . . . . 10 ((𝑡:ω–1-1→V ∧ (𝑎𝑃𝑏𝑃)) → (((𝑡𝑎) ∖ ran 𝑈) = ((𝑡𝑏) ∖ ran 𝑈) → (𝑡𝑎) = (𝑡𝑏)))
688sseli 3564 . . . . . . . . . . . 12 (𝑎𝑃𝑎 ∈ ω)
698sseli 3564 . . . . . . . . . . . 12 (𝑏𝑃𝑏 ∈ ω)
7068, 69anim12i 588 . . . . . . . . . . 11 ((𝑎𝑃𝑏𝑃) → (𝑎 ∈ ω ∧ 𝑏 ∈ ω))
71 f1fveq 6420 . . . . . . . . . . 11 ((𝑡:ω–1-1→V ∧ (𝑎 ∈ ω ∧ 𝑏 ∈ ω)) → ((𝑡𝑎) = (𝑡𝑏) ↔ 𝑎 = 𝑏))
7270, 71sylan2 490 . . . . . . . . . 10 ((𝑡:ω–1-1→V ∧ (𝑎𝑃𝑏𝑃)) → ((𝑡𝑎) = (𝑡𝑏) ↔ 𝑎 = 𝑏))
7367, 72sylibd 228 . . . . . . . . 9 ((𝑡:ω–1-1→V ∧ (𝑎𝑃𝑏𝑃)) → (((𝑡𝑎) ∖ ran 𝑈) = ((𝑡𝑏) ∖ ran 𝑈) → 𝑎 = 𝑏))
7450, 73sylbid 229 . . . . . . . 8 ((𝑡:ω–1-1→V ∧ (𝑎𝑃𝑏𝑃)) → (((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈))‘𝑎) = ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈))‘𝑏) → 𝑎 = 𝑏))
7574ralrimivva 2954 . . . . . . 7 (𝑡:ω–1-1→V → ∀𝑎𝑃𝑏𝑃 (((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈))‘𝑎) = ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈))‘𝑏) → 𝑎 = 𝑏))
76 dff13 6416 . . . . . . 7 ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)):𝑃1-1→V ↔ ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)):𝑃⟶V ∧ ∀𝑎𝑃𝑏𝑃 (((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈))‘𝑎) = ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈))‘𝑏) → 𝑎 = 𝑏)))
7735, 75, 76sylanbrc 695 . . . . . 6 (𝑡:ω–1-1→V → (𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)):𝑃1-1→V)
78 fin23lem.c . . . . . . . . 9 𝑄 = (𝑤 ∈ ω ↦ (𝑥𝑃 (𝑥𝑃) ≈ 𝑤))
7978fin23lem22 9032 . . . . . . . 8 ((𝑃 ⊆ ω ∧ ¬ 𝑃 ∈ Fin) → 𝑄:ω–1-1-onto𝑃)
80 f1of1 6049 . . . . . . . 8 (𝑄:ω–1-1-onto𝑃𝑄:ω–1-1𝑃)
8179, 80syl 17 . . . . . . 7 ((𝑃 ⊆ ω ∧ ¬ 𝑃 ∈ Fin) → 𝑄:ω–1-1𝑃)
828, 81mpan 702 . . . . . 6 𝑃 ∈ Fin → 𝑄:ω–1-1𝑃)
83 f1co 6023 . . . . . 6 (((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)):𝑃1-1→V ∧ 𝑄:ω–1-1𝑃) → ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄):ω–1-1→V)
8477, 82, 83syl2an 493 . . . . 5 ((𝑡:ω–1-1→V ∧ ¬ 𝑃 ∈ Fin) → ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄):ω–1-1→V)
85 f1eq1 6009 . . . . 5 (𝑍 = ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄) → (𝑍:ω–1-1→V ↔ ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄):ω–1-1→V))
8684, 85syl5ibrcom 236 . . . 4 ((𝑡:ω–1-1→V ∧ ¬ 𝑃 ∈ Fin) → (𝑍 = ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄) → 𝑍:ω–1-1→V))
8786impr 647 . . 3 ((𝑡:ω–1-1→V ∧ (¬ 𝑃 ∈ Fin ∧ 𝑍 = ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄))) → 𝑍:ω–1-1→V)
8827, 87jaodan 822 . 2 ((𝑡:ω–1-1→V ∧ ((𝑃 ∈ Fin ∧ 𝑍 = (𝑡𝑅)) ∨ (¬ 𝑃 ∈ Fin ∧ 𝑍 = ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄)))) → 𝑍:ω–1-1→V)
893, 88mpan2 703 1 (𝑡:ω–1-1→V → 𝑍:ω–1-1→V)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383   = wceq 1475  wcel 1977  {cab 2596  wral 2896  {crab 2900  Vcvv 3173  cdif 3537  cun 3538  cin 3539  wss 3540  c0 3874  ifcif 4036  𝒫 cpw 4108   cuni 4372   cint 4410   class class class wbr 4583  cmpt 4643  ran crn 5039  ccom 5042  suc csuc 5642  wf 5800  1-1wf1 5801  1-1-ontowf1o 5803  cfv 5804  crio 6510  (class class class)co 6549  cmpt2 6551  ωcom 6957  seq𝜔cseqom 7429  𝑚 cmap 7744  cen 7838  Fincfn 7841
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648
This theorem is referenced by:  fin23lem32  9049
  Copyright terms: Public domain W3C validator