MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin23lem29 Structured version   Visualization version   GIF version

Theorem fin23lem29 9046
Description: Lemma for fin23 9094. The residual is built from the same elements as the previous sequence. (Contributed by Stefan O'Rear, 2-Nov-2014.)
Hypotheses
Ref Expression
fin23lem.a 𝑈 = seq𝜔((𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡𝑖) ∩ 𝑢))), ran 𝑡)
fin23lem17.f 𝐹 = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔𝑚 ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎𝑥) → ran 𝑎 ∈ ran 𝑎)}
fin23lem.b 𝑃 = {𝑣 ∈ ω ∣ ran 𝑈 ⊆ (𝑡𝑣)}
fin23lem.c 𝑄 = (𝑤 ∈ ω ↦ (𝑥𝑃 (𝑥𝑃) ≈ 𝑤))
fin23lem.d 𝑅 = (𝑤 ∈ ω ↦ (𝑥 ∈ (ω ∖ 𝑃)(𝑥 ∩ (ω ∖ 𝑃)) ≈ 𝑤))
fin23lem.e 𝑍 = if(𝑃 ∈ Fin, (𝑡𝑅), ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄))
Assertion
Ref Expression
fin23lem29 ran 𝑍 ran 𝑡
Distinct variable groups:   𝑔,𝑖,𝑡,𝑢,𝑣,𝑥,𝑧,𝑎   𝐹,𝑎,𝑡   𝑤,𝑎,𝑥,𝑧,𝑃   𝑣,𝑎,𝑅,𝑖,𝑢   𝑈,𝑎,𝑖,𝑢,𝑣,𝑧   𝑍,𝑎   𝑔,𝑎
Allowed substitution hints:   𝑃(𝑣,𝑢,𝑡,𝑔,𝑖)   𝑄(𝑥,𝑧,𝑤,𝑣,𝑢,𝑡,𝑔,𝑖,𝑎)   𝑅(𝑥,𝑧,𝑤,𝑡,𝑔)   𝑈(𝑥,𝑤,𝑡,𝑔)   𝐹(𝑥,𝑧,𝑤,𝑣,𝑢,𝑔,𝑖)   𝑍(𝑥,𝑧,𝑤,𝑣,𝑢,𝑡,𝑔,𝑖)

Proof of Theorem fin23lem29
StepHypRef Expression
1 fin23lem.e . 2 𝑍 = if(𝑃 ∈ Fin, (𝑡𝑅), ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄))
2 eqif 4076 . . 3 (𝑍 = if(𝑃 ∈ Fin, (𝑡𝑅), ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄)) ↔ ((𝑃 ∈ Fin ∧ 𝑍 = (𝑡𝑅)) ∨ (¬ 𝑃 ∈ Fin ∧ 𝑍 = ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄))))
32biimpi 205 . 2 (𝑍 = if(𝑃 ∈ Fin, (𝑡𝑅), ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄)) → ((𝑃 ∈ Fin ∧ 𝑍 = (𝑡𝑅)) ∨ (¬ 𝑃 ∈ Fin ∧ 𝑍 = ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄))))
4 rneq 5272 . . . . . 6 (𝑍 = (𝑡𝑅) → ran 𝑍 = ran (𝑡𝑅))
54unieqd 4382 . . . . 5 (𝑍 = (𝑡𝑅) → ran 𝑍 = ran (𝑡𝑅))
6 rncoss 5307 . . . . . 6 ran (𝑡𝑅) ⊆ ran 𝑡
76unissi 4397 . . . . 5 ran (𝑡𝑅) ⊆ ran 𝑡
85, 7syl6eqss 3618 . . . 4 (𝑍 = (𝑡𝑅) → ran 𝑍 ran 𝑡)
98adantl 481 . . 3 ((𝑃 ∈ Fin ∧ 𝑍 = (𝑡𝑅)) → ran 𝑍 ran 𝑡)
10 rneq 5272 . . . . . 6 (𝑍 = ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄) → ran 𝑍 = ran ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄))
1110unieqd 4382 . . . . 5 (𝑍 = ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄) → ran 𝑍 = ran ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄))
12 rncoss 5307 . . . . . . 7 ran ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄) ⊆ ran (𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈))
1312unissi 4397 . . . . . 6 ran ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄) ⊆ ran (𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈))
14 unissb 4405 . . . . . . 7 ( ran (𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ⊆ ran 𝑡 ↔ ∀𝑎 ∈ ran (𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈))𝑎 ran 𝑡)
15 abid 2598 . . . . . . . . 9 (𝑎 ∈ {𝑎 ∣ ∃𝑧𝑃 𝑎 = ((𝑡𝑧) ∖ ran 𝑈)} ↔ ∃𝑧𝑃 𝑎 = ((𝑡𝑧) ∖ ran 𝑈))
16 fvssunirn 6127 . . . . . . . . . . . . 13 (𝑡𝑧) ⊆ ran 𝑡
1716a1i 11 . . . . . . . . . . . 12 (𝑧𝑃 → (𝑡𝑧) ⊆ ran 𝑡)
1817ssdifssd 3710 . . . . . . . . . . 11 (𝑧𝑃 → ((𝑡𝑧) ∖ ran 𝑈) ⊆ ran 𝑡)
19 sseq1 3589 . . . . . . . . . . 11 (𝑎 = ((𝑡𝑧) ∖ ran 𝑈) → (𝑎 ran 𝑡 ↔ ((𝑡𝑧) ∖ ran 𝑈) ⊆ ran 𝑡))
2018, 19syl5ibrcom 236 . . . . . . . . . 10 (𝑧𝑃 → (𝑎 = ((𝑡𝑧) ∖ ran 𝑈) → 𝑎 ran 𝑡))
2120rexlimiv 3009 . . . . . . . . 9 (∃𝑧𝑃 𝑎 = ((𝑡𝑧) ∖ ran 𝑈) → 𝑎 ran 𝑡)
2215, 21sylbi 206 . . . . . . . 8 (𝑎 ∈ {𝑎 ∣ ∃𝑧𝑃 𝑎 = ((𝑡𝑧) ∖ ran 𝑈)} → 𝑎 ran 𝑡)
23 eqid 2610 . . . . . . . . 9 (𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) = (𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈))
2423rnmpt 5292 . . . . . . . 8 ran (𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) = {𝑎 ∣ ∃𝑧𝑃 𝑎 = ((𝑡𝑧) ∖ ran 𝑈)}
2522, 24eleq2s 2706 . . . . . . 7 (𝑎 ∈ ran (𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) → 𝑎 ran 𝑡)
2614, 25mprgbir 2911 . . . . . 6 ran (𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ⊆ ran 𝑡
2713, 26sstri 3577 . . . . 5 ran ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄) ⊆ ran 𝑡
2811, 27syl6eqss 3618 . . . 4 (𝑍 = ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄) → ran 𝑍 ran 𝑡)
2928adantl 481 . . 3 ((¬ 𝑃 ∈ Fin ∧ 𝑍 = ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄)) → ran 𝑍 ran 𝑡)
309, 29jaoi 393 . 2 (((𝑃 ∈ Fin ∧ 𝑍 = (𝑡𝑅)) ∨ (¬ 𝑃 ∈ Fin ∧ 𝑍 = ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄))) → ran 𝑍 ran 𝑡)
311, 3, 30mp2b 10 1 ran 𝑍 ran 𝑡
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 382  wa 383   = wceq 1475  wcel 1977  {cab 2596  wral 2896  wrex 2897  {crab 2900  Vcvv 3173  cdif 3537  cin 3539  wss 3540  c0 3874  ifcif 4036  𝒫 cpw 4108   cuni 4372   cint 4410   class class class wbr 4583  cmpt 4643  ran crn 5039  ccom 5042  suc csuc 5642  cfv 5804  crio 6510  (class class class)co 6549  cmpt2 6551  ωcom 6957  seq𝜔cseqom 7429  𝑚 cmap 7744  cen 7838  Fincfn 7841
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-iota 5768  df-fv 5812
This theorem is referenced by:  fin23lem31  9048
  Copyright terms: Public domain W3C validator