Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  filin Structured version   Visualization version   GIF version

Theorem filin 21468
 Description: A filter is closed under taking intersections. (Contributed by FL, 20-Jul-2007.) (Revised by Stefan O'Rear, 28-Jul-2015.)
Assertion
Ref Expression
filin ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹𝐵𝐹) → (𝐴𝐵) ∈ 𝐹)

Proof of Theorem filin
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 filfbas 21462 . . 3 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (fBas‘𝑋))
2 fbasssin 21450 . . 3 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐴𝐹𝐵𝐹) → ∃𝑥𝐹 𝑥 ⊆ (𝐴𝐵))
31, 2syl3an1 1351 . 2 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹𝐵𝐹) → ∃𝑥𝐹 𝑥 ⊆ (𝐴𝐵))
4 inss1 3795 . . . . 5 (𝐴𝐵) ⊆ 𝐴
5 filelss 21466 . . . . 5 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹) → 𝐴𝑋)
64, 5syl5ss 3579 . . . 4 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹) → (𝐴𝐵) ⊆ 𝑋)
7 filss 21467 . . . . . . . 8 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑥𝐹 ∧ (𝐴𝐵) ⊆ 𝑋𝑥 ⊆ (𝐴𝐵))) → (𝐴𝐵) ∈ 𝐹)
873exp2 1277 . . . . . . 7 (𝐹 ∈ (Fil‘𝑋) → (𝑥𝐹 → ((𝐴𝐵) ⊆ 𝑋 → (𝑥 ⊆ (𝐴𝐵) → (𝐴𝐵) ∈ 𝐹))))
98com23 84 . . . . . 6 (𝐹 ∈ (Fil‘𝑋) → ((𝐴𝐵) ⊆ 𝑋 → (𝑥𝐹 → (𝑥 ⊆ (𝐴𝐵) → (𝐴𝐵) ∈ 𝐹))))
109imp 444 . . . . 5 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐴𝐵) ⊆ 𝑋) → (𝑥𝐹 → (𝑥 ⊆ (𝐴𝐵) → (𝐴𝐵) ∈ 𝐹)))
1110rexlimdv 3012 . . . 4 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐴𝐵) ⊆ 𝑋) → (∃𝑥𝐹 𝑥 ⊆ (𝐴𝐵) → (𝐴𝐵) ∈ 𝐹))
126, 11syldan 486 . . 3 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹) → (∃𝑥𝐹 𝑥 ⊆ (𝐴𝐵) → (𝐴𝐵) ∈ 𝐹))
13123adant3 1074 . 2 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹𝐵𝐹) → (∃𝑥𝐹 𝑥 ⊆ (𝐴𝐵) → (𝐴𝐵) ∈ 𝐹))
143, 13mpd 15 1 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝐹𝐵𝐹) → (𝐴𝐵) ∈ 𝐹)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1031   ∈ wcel 1977  ∃wrex 2897   ∩ cin 3539   ⊆ wss 3540  ‘cfv 5804  fBascfbas 19555  Filcfil 21459 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fv 5812  df-fbas 19564  df-fil 21460 This theorem is referenced by:  isfil2  21470  filfi  21473  filinn0  21474  infil  21477  filcon  21497  filuni  21499  trfil2  21501  trfilss  21503  ufprim  21523  filufint  21534  rnelfmlem  21566  rnelfm  21567  fmfnfmlem2  21569  fmfnfmlem3  21570  fmfnfmlem4  21571  fmfnfm  21572  txflf  21620  fclsrest  21638  metust  22173  filnetlem3  31545
 Copyright terms: Public domain W3C validator