MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  filin Structured version   Unicode version

Theorem filin 19268
Description: A filter is closed under taking intersections. (Contributed by FL, 20-Jul-2007.) (Revised by Stefan O'Rear, 28-Jul-2015.)
Assertion
Ref Expression
filin  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  F  /\  B  e.  F )  ->  ( A  i^i  B )  e.  F )

Proof of Theorem filin
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 filfbas 19262 . . 3  |-  ( F  e.  ( Fil `  X
)  ->  F  e.  ( fBas `  X )
)
2 fbasssin 19250 . . 3  |-  ( ( F  e.  ( fBas `  X )  /\  A  e.  F  /\  B  e.  F )  ->  E. x  e.  F  x  C_  ( A  i^i  B ) )
31, 2syl3an1 1244 . 2  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  F  /\  B  e.  F )  ->  E. x  e.  F  x  C_  ( A  i^i  B ) )
4 inss1 3558 . . . . 5  |-  ( A  i^i  B )  C_  A
5 filelss 19266 . . . . 5  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  F )  ->  A  C_  X )
64, 5syl5ss 3355 . . . 4  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  F )  ->  ( A  i^i  B )  C_  X )
7 filss 19267 . . . . . . . 8  |-  ( ( F  e.  ( Fil `  X )  /\  (
x  e.  F  /\  ( A  i^i  B ) 
C_  X  /\  x  C_  ( A  i^i  B
) ) )  -> 
( A  i^i  B
)  e.  F )
873exp2 1198 . . . . . . 7  |-  ( F  e.  ( Fil `  X
)  ->  ( x  e.  F  ->  ( ( A  i^i  B ) 
C_  X  ->  (
x  C_  ( A  i^i  B )  ->  ( A  i^i  B )  e.  F ) ) ) )
98com23 78 . . . . . 6  |-  ( F  e.  ( Fil `  X
)  ->  ( ( A  i^i  B )  C_  X  ->  ( x  e.  F  ->  ( x  C_  ( A  i^i  B
)  ->  ( A  i^i  B )  e.  F
) ) ) )
109imp 429 . . . . 5  |-  ( ( F  e.  ( Fil `  X )  /\  ( A  i^i  B )  C_  X )  ->  (
x  e.  F  -> 
( x  C_  ( A  i^i  B )  -> 
( A  i^i  B
)  e.  F ) ) )
1110rexlimdv 2830 . . . 4  |-  ( ( F  e.  ( Fil `  X )  /\  ( A  i^i  B )  C_  X )  ->  ( E. x  e.  F  x  C_  ( A  i^i  B )  ->  ( A  i^i  B )  e.  F
) )
126, 11syldan 467 . . 3  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  F )  ->  ( E. x  e.  F  x  C_  ( A  i^i  B )  ->  ( A  i^i  B )  e.  F
) )
13123adant3 1001 . 2  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  F  /\  B  e.  F )  ->  ( E. x  e.  F  x  C_  ( A  i^i  B )  ->  ( A  i^i  B )  e.  F
) )
143, 13mpd 15 1  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  F  /\  B  e.  F )  ->  ( A  i^i  B )  e.  F )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 958    e. wcel 1755   E.wrex 2706    i^i cin 3315    C_ wss 3316   ` cfv 5406   fBascfbas 17647   Filcfil 19259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1594  ax-4 1605  ax-5 1669  ax-6 1707  ax-7 1727  ax-8 1757  ax-9 1759  ax-10 1774  ax-11 1779  ax-12 1791  ax-13 1942  ax-ext 2414  ax-sep 4401  ax-nul 4409  ax-pow 4458  ax-pr 4519
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 960  df-tru 1365  df-ex 1590  df-nf 1593  df-sb 1700  df-eu 2258  df-mo 2259  df-clab 2420  df-cleq 2426  df-clel 2429  df-nfc 2558  df-ne 2598  df-nel 2599  df-ral 2710  df-rex 2711  df-rab 2714  df-v 2964  df-sbc 3176  df-csb 3277  df-dif 3319  df-un 3321  df-in 3323  df-ss 3330  df-nul 3626  df-if 3780  df-pw 3850  df-sn 3866  df-pr 3868  df-op 3872  df-uni 4080  df-br 4281  df-opab 4339  df-mpt 4340  df-id 4623  df-xp 4833  df-rel 4834  df-cnv 4835  df-co 4836  df-dm 4837  df-rn 4838  df-res 4839  df-ima 4840  df-iota 5369  df-fun 5408  df-fv 5414  df-fbas 17657  df-fil 19260
This theorem is referenced by:  isfil2  19270  filfi  19273  filinn0  19274  infil  19277  filcon  19297  filuni  19299  trfil2  19301  trfilss  19303  ufprim  19323  filufint  19334  rnelfmlem  19366  rnelfm  19367  fmfnfmlem2  19369  fmfnfmlem3  19370  fmfnfmlem4  19371  fmfnfm  19372  txflf  19420  fclsrest  19438  metustOLD  19983  metust  19984  filnetlem3  28442
  Copyright terms: Public domain W3C validator