MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fclscmpi Structured version   Visualization version   GIF version

Theorem fclscmpi 21643
Description: Forward direction of fclscmp 21644. Every filter clusters in a compact space. (Contributed by Mario Carneiro, 11-Apr-2015.) (Revised by Stefan O'Rear, 8-Aug-2015.)
Hypothesis
Ref Expression
flimfnfcls.x 𝑋 = 𝐽
Assertion
Ref Expression
fclscmpi ((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐽 fClus 𝐹) ≠ ∅)

Proof of Theorem fclscmpi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 cmptop 21008 . . . 4 (𝐽 ∈ Comp → 𝐽 ∈ Top)
2 flimfnfcls.x . . . . . 6 𝑋 = 𝐽
32fclsval 21622 . . . . 5 ((𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐽 fClus 𝐹) = if(𝑋 = 𝑋, 𝑥𝐹 ((cls‘𝐽)‘𝑥), ∅))
4 eqid 2610 . . . . . 6 𝑋 = 𝑋
54iftruei 4043 . . . . 5 if(𝑋 = 𝑋, 𝑥𝐹 ((cls‘𝐽)‘𝑥), ∅) = 𝑥𝐹 ((cls‘𝐽)‘𝑥)
63, 5syl6eq 2660 . . . 4 ((𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐽 fClus 𝐹) = 𝑥𝐹 ((cls‘𝐽)‘𝑥))
71, 6sylan 487 . . 3 ((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐽 fClus 𝐹) = 𝑥𝐹 ((cls‘𝐽)‘𝑥))
8 fvex 6113 . . . 4 ((cls‘𝐽)‘𝑥) ∈ V
98dfiin3 5302 . . 3 𝑥𝐹 ((cls‘𝐽)‘𝑥) = ran (𝑥𝐹 ↦ ((cls‘𝐽)‘𝑥))
107, 9syl6eq 2660 . 2 ((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐽 fClus 𝐹) = ran (𝑥𝐹 ↦ ((cls‘𝐽)‘𝑥)))
11 simpl 472 . . 3 ((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) → 𝐽 ∈ Comp)
1211adantr 480 . . . . . . 7 (((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥𝐹) → 𝐽 ∈ Comp)
1312, 1syl 17 . . . . . 6 (((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥𝐹) → 𝐽 ∈ Top)
14 filelss 21466 . . . . . . 7 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝐹) → 𝑥𝑋)
1514adantll 746 . . . . . 6 (((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥𝐹) → 𝑥𝑋)
162clscld 20661 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑥𝑋) → ((cls‘𝐽)‘𝑥) ∈ (Clsd‘𝐽))
1713, 15, 16syl2anc 691 . . . . 5 (((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥𝐹) → ((cls‘𝐽)‘𝑥) ∈ (Clsd‘𝐽))
18 eqid 2610 . . . . 5 (𝑥𝐹 ↦ ((cls‘𝐽)‘𝑥)) = (𝑥𝐹 ↦ ((cls‘𝐽)‘𝑥))
1917, 18fmptd 6292 . . . 4 ((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝑥𝐹 ↦ ((cls‘𝐽)‘𝑥)):𝐹⟶(Clsd‘𝐽))
20 frn 5966 . . . 4 ((𝑥𝐹 ↦ ((cls‘𝐽)‘𝑥)):𝐹⟶(Clsd‘𝐽) → ran (𝑥𝐹 ↦ ((cls‘𝐽)‘𝑥)) ⊆ (Clsd‘𝐽))
2119, 20syl 17 . . 3 ((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) → ran (𝑥𝐹 ↦ ((cls‘𝐽)‘𝑥)) ⊆ (Clsd‘𝐽))
22 simpr 476 . . . . . 6 ((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) → 𝐹 ∈ (Fil‘𝑋))
2322adantr 480 . . . . . . . . 9 (((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥𝐹) → 𝐹 ∈ (Fil‘𝑋))
24 simpr 476 . . . . . . . . 9 (((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥𝐹) → 𝑥𝐹)
252clsss3 20673 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝑥𝑋) → ((cls‘𝐽)‘𝑥) ⊆ 𝑋)
2613, 15, 25syl2anc 691 . . . . . . . . 9 (((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥𝐹) → ((cls‘𝐽)‘𝑥) ⊆ 𝑋)
272sscls 20670 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝑥𝑋) → 𝑥 ⊆ ((cls‘𝐽)‘𝑥))
2813, 15, 27syl2anc 691 . . . . . . . . 9 (((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥𝐹) → 𝑥 ⊆ ((cls‘𝐽)‘𝑥))
29 filss 21467 . . . . . . . . 9 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑥𝐹 ∧ ((cls‘𝐽)‘𝑥) ⊆ 𝑋𝑥 ⊆ ((cls‘𝐽)‘𝑥))) → ((cls‘𝐽)‘𝑥) ∈ 𝐹)
3023, 24, 26, 28, 29syl13anc 1320 . . . . . . . 8 (((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑥𝐹) → ((cls‘𝐽)‘𝑥) ∈ 𝐹)
3130, 18fmptd 6292 . . . . . . 7 ((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝑥𝐹 ↦ ((cls‘𝐽)‘𝑥)):𝐹𝐹)
32 frn 5966 . . . . . . 7 ((𝑥𝐹 ↦ ((cls‘𝐽)‘𝑥)):𝐹𝐹 → ran (𝑥𝐹 ↦ ((cls‘𝐽)‘𝑥)) ⊆ 𝐹)
3331, 32syl 17 . . . . . 6 ((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) → ran (𝑥𝐹 ↦ ((cls‘𝐽)‘𝑥)) ⊆ 𝐹)
34 fiss 8213 . . . . . 6 ((𝐹 ∈ (Fil‘𝑋) ∧ ran (𝑥𝐹 ↦ ((cls‘𝐽)‘𝑥)) ⊆ 𝐹) → (fi‘ran (𝑥𝐹 ↦ ((cls‘𝐽)‘𝑥))) ⊆ (fi‘𝐹))
3522, 33, 34syl2anc 691 . . . . 5 ((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) → (fi‘ran (𝑥𝐹 ↦ ((cls‘𝐽)‘𝑥))) ⊆ (fi‘𝐹))
36 filfi 21473 . . . . . 6 (𝐹 ∈ (Fil‘𝑋) → (fi‘𝐹) = 𝐹)
3722, 36syl 17 . . . . 5 ((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) → (fi‘𝐹) = 𝐹)
3835, 37sseqtrd 3604 . . . 4 ((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) → (fi‘ran (𝑥𝐹 ↦ ((cls‘𝐽)‘𝑥))) ⊆ 𝐹)
39 0nelfil 21463 . . . . 5 (𝐹 ∈ (Fil‘𝑋) → ¬ ∅ ∈ 𝐹)
4022, 39syl 17 . . . 4 ((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) → ¬ ∅ ∈ 𝐹)
4138, 40ssneldd 3571 . . 3 ((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) → ¬ ∅ ∈ (fi‘ran (𝑥𝐹 ↦ ((cls‘𝐽)‘𝑥))))
42 cmpfii 21022 . . 3 ((𝐽 ∈ Comp ∧ ran (𝑥𝐹 ↦ ((cls‘𝐽)‘𝑥)) ⊆ (Clsd‘𝐽) ∧ ¬ ∅ ∈ (fi‘ran (𝑥𝐹 ↦ ((cls‘𝐽)‘𝑥)))) → ran (𝑥𝐹 ↦ ((cls‘𝐽)‘𝑥)) ≠ ∅)
4311, 21, 41, 42syl3anc 1318 . 2 ((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) → ran (𝑥𝐹 ↦ ((cls‘𝐽)‘𝑥)) ≠ ∅)
4410, 43eqnetrd 2849 1 ((𝐽 ∈ Comp ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐽 fClus 𝐹) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383   = wceq 1475  wcel 1977  wne 2780  wss 3540  c0 3874  ifcif 4036   cuni 4372   cint 4410   ciin 4456  cmpt 4643  ran crn 5039  wf 5800  cfv 5804  (class class class)co 6549  ficfi 8199  Topctop 20517  Clsdccld 20630  clsccl 20632  Compccmp 20999  Filcfil 21459   fClus cfcls 21550
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fi 8200  df-fbas 19564  df-top 20521  df-cld 20633  df-cls 20635  df-cmp 21000  df-fil 21460  df-fcls 21555
This theorem is referenced by:  fclscmp  21644  ufilcmp  21646  relcmpcmet  22923
  Copyright terms: Public domain W3C validator