Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > erclwwlkref | Structured version Visualization version GIF version |
Description: ∼ is a reflexive relation over the set of closed walks (defined as words). (Contributed by Alexander van der Vekens, 25-Mar-2018.) (Revised by Alexander van der Vekens, 11-Jun-2018.) |
Ref | Expression |
---|---|
erclwwlk.r | ⊢ ∼ = {〈𝑢, 𝑤〉 ∣ (𝑢 ∈ (𝑉 ClWWalks 𝐸) ∧ 𝑤 ∈ (𝑉 ClWWalks 𝐸) ∧ ∃𝑛 ∈ (0...(#‘𝑤))𝑢 = (𝑤 cyclShift 𝑛))} |
Ref | Expression |
---|---|
erclwwlkref | ⊢ (𝑥 ∈ (𝑉 ClWWalks 𝐸) ↔ 𝑥 ∼ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anidm 674 | . . . 4 ⊢ ((𝑥 ∈ (𝑉 ClWWalks 𝐸) ∧ 𝑥 ∈ (𝑉 ClWWalks 𝐸)) ↔ 𝑥 ∈ (𝑉 ClWWalks 𝐸)) | |
2 | 1 | anbi1i 727 | . . 3 ⊢ (((𝑥 ∈ (𝑉 ClWWalks 𝐸) ∧ 𝑥 ∈ (𝑉 ClWWalks 𝐸)) ∧ ∃𝑛 ∈ (0...(#‘𝑥))𝑥 = (𝑥 cyclShift 𝑛)) ↔ (𝑥 ∈ (𝑉 ClWWalks 𝐸) ∧ ∃𝑛 ∈ (0...(#‘𝑥))𝑥 = (𝑥 cyclShift 𝑛))) |
3 | df-3an 1033 | . . 3 ⊢ ((𝑥 ∈ (𝑉 ClWWalks 𝐸) ∧ 𝑥 ∈ (𝑉 ClWWalks 𝐸) ∧ ∃𝑛 ∈ (0...(#‘𝑥))𝑥 = (𝑥 cyclShift 𝑛)) ↔ ((𝑥 ∈ (𝑉 ClWWalks 𝐸) ∧ 𝑥 ∈ (𝑉 ClWWalks 𝐸)) ∧ ∃𝑛 ∈ (0...(#‘𝑥))𝑥 = (𝑥 cyclShift 𝑛))) | |
4 | clwwlkprop 26298 | . . . . 5 ⊢ (𝑥 ∈ (𝑉 ClWWalks 𝐸) → (𝑉 ∈ V ∧ 𝐸 ∈ V ∧ 𝑥 ∈ Word 𝑉)) | |
5 | cshw0 13391 | . . . . . . 7 ⊢ (𝑥 ∈ Word 𝑉 → (𝑥 cyclShift 0) = 𝑥) | |
6 | 0nn0 11184 | . . . . . . . . . 10 ⊢ 0 ∈ ℕ0 | |
7 | 6 | a1i 11 | . . . . . . . . 9 ⊢ (𝑥 ∈ Word 𝑉 → 0 ∈ ℕ0) |
8 | lencl 13179 | . . . . . . . . 9 ⊢ (𝑥 ∈ Word 𝑉 → (#‘𝑥) ∈ ℕ0) | |
9 | hashge0 13037 | . . . . . . . . 9 ⊢ (𝑥 ∈ Word 𝑉 → 0 ≤ (#‘𝑥)) | |
10 | elfz2nn0 12300 | . . . . . . . . 9 ⊢ (0 ∈ (0...(#‘𝑥)) ↔ (0 ∈ ℕ0 ∧ (#‘𝑥) ∈ ℕ0 ∧ 0 ≤ (#‘𝑥))) | |
11 | 7, 8, 9, 10 | syl3anbrc 1239 | . . . . . . . 8 ⊢ (𝑥 ∈ Word 𝑉 → 0 ∈ (0...(#‘𝑥))) |
12 | eqcom 2617 | . . . . . . . . 9 ⊢ ((𝑥 cyclShift 0) = 𝑥 ↔ 𝑥 = (𝑥 cyclShift 0)) | |
13 | 12 | biimpi 205 | . . . . . . . 8 ⊢ ((𝑥 cyclShift 0) = 𝑥 → 𝑥 = (𝑥 cyclShift 0)) |
14 | oveq2 6557 | . . . . . . . . . 10 ⊢ (𝑛 = 0 → (𝑥 cyclShift 𝑛) = (𝑥 cyclShift 0)) | |
15 | 14 | eqeq2d 2620 | . . . . . . . . 9 ⊢ (𝑛 = 0 → (𝑥 = (𝑥 cyclShift 𝑛) ↔ 𝑥 = (𝑥 cyclShift 0))) |
16 | 15 | rspcev 3282 | . . . . . . . 8 ⊢ ((0 ∈ (0...(#‘𝑥)) ∧ 𝑥 = (𝑥 cyclShift 0)) → ∃𝑛 ∈ (0...(#‘𝑥))𝑥 = (𝑥 cyclShift 𝑛)) |
17 | 11, 13, 16 | syl2an 493 | . . . . . . 7 ⊢ ((𝑥 ∈ Word 𝑉 ∧ (𝑥 cyclShift 0) = 𝑥) → ∃𝑛 ∈ (0...(#‘𝑥))𝑥 = (𝑥 cyclShift 𝑛)) |
18 | 5, 17 | mpdan 699 | . . . . . 6 ⊢ (𝑥 ∈ Word 𝑉 → ∃𝑛 ∈ (0...(#‘𝑥))𝑥 = (𝑥 cyclShift 𝑛)) |
19 | 18 | 3ad2ant3 1077 | . . . . 5 ⊢ ((𝑉 ∈ V ∧ 𝐸 ∈ V ∧ 𝑥 ∈ Word 𝑉) → ∃𝑛 ∈ (0...(#‘𝑥))𝑥 = (𝑥 cyclShift 𝑛)) |
20 | 4, 19 | syl 17 | . . . 4 ⊢ (𝑥 ∈ (𝑉 ClWWalks 𝐸) → ∃𝑛 ∈ (0...(#‘𝑥))𝑥 = (𝑥 cyclShift 𝑛)) |
21 | 20 | pm4.71i 662 | . . 3 ⊢ (𝑥 ∈ (𝑉 ClWWalks 𝐸) ↔ (𝑥 ∈ (𝑉 ClWWalks 𝐸) ∧ ∃𝑛 ∈ (0...(#‘𝑥))𝑥 = (𝑥 cyclShift 𝑛))) |
22 | 2, 3, 21 | 3bitr4ri 292 | . 2 ⊢ (𝑥 ∈ (𝑉 ClWWalks 𝐸) ↔ (𝑥 ∈ (𝑉 ClWWalks 𝐸) ∧ 𝑥 ∈ (𝑉 ClWWalks 𝐸) ∧ ∃𝑛 ∈ (0...(#‘𝑥))𝑥 = (𝑥 cyclShift 𝑛))) |
23 | vex 3176 | . . 3 ⊢ 𝑥 ∈ V | |
24 | erclwwlk.r | . . . 4 ⊢ ∼ = {〈𝑢, 𝑤〉 ∣ (𝑢 ∈ (𝑉 ClWWalks 𝐸) ∧ 𝑤 ∈ (𝑉 ClWWalks 𝐸) ∧ ∃𝑛 ∈ (0...(#‘𝑤))𝑢 = (𝑤 cyclShift 𝑛))} | |
25 | 24 | erclwwlkeq 26339 | . . 3 ⊢ ((𝑥 ∈ V ∧ 𝑥 ∈ V) → (𝑥 ∼ 𝑥 ↔ (𝑥 ∈ (𝑉 ClWWalks 𝐸) ∧ 𝑥 ∈ (𝑉 ClWWalks 𝐸) ∧ ∃𝑛 ∈ (0...(#‘𝑥))𝑥 = (𝑥 cyclShift 𝑛)))) |
26 | 23, 23, 25 | mp2an 704 | . 2 ⊢ (𝑥 ∼ 𝑥 ↔ (𝑥 ∈ (𝑉 ClWWalks 𝐸) ∧ 𝑥 ∈ (𝑉 ClWWalks 𝐸) ∧ ∃𝑛 ∈ (0...(#‘𝑥))𝑥 = (𝑥 cyclShift 𝑛))) |
27 | 22, 26 | bitr4i 266 | 1 ⊢ (𝑥 ∈ (𝑉 ClWWalks 𝐸) ↔ 𝑥 ∼ 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 195 ∧ wa 383 ∧ w3a 1031 = wceq 1475 ∈ wcel 1977 ∃wrex 2897 Vcvv 3173 class class class wbr 4583 {copab 4642 ‘cfv 5804 (class class class)co 6549 0cc0 9815 ≤ cle 9954 ℕ0cn0 11169 ...cfz 12197 #chash 12979 Word cword 13146 cyclShift ccsh 13385 ClWWalks cclwwlk 26276 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 ax-pre-sup 9893 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-int 4411 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-1st 7059 df-2nd 7060 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-1o 7447 df-oadd 7451 df-er 7629 df-map 7746 df-pm 7747 df-en 7842 df-dom 7843 df-sdom 7844 df-fin 7845 df-sup 8231 df-inf 8232 df-card 8648 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-div 10564 df-nn 10898 df-n0 11170 df-xnn0 11241 df-z 11255 df-uz 11564 df-rp 11709 df-fz 12198 df-fzo 12335 df-fl 12455 df-mod 12531 df-hash 12980 df-word 13154 df-concat 13156 df-substr 13158 df-csh 13386 df-clwwlk 26279 |
This theorem is referenced by: erclwwlk 26344 |
Copyright terms: Public domain | W3C validator |