Proof of Theorem equivbnd2
Step | Hyp | Ref
| Expression |
1 | | totbndbnd 32758 |
. 2
⊢ (𝐷 ∈ (TotBnd‘𝑌) → 𝐷 ∈ (Bnd‘𝑌)) |
2 | | simpr 476 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐷 ∈ (Bnd‘𝑌)) → 𝐷 ∈ (Bnd‘𝑌)) |
3 | | equivbnd2.7 |
. . . . . . 7
⊢ 𝐶 = (𝑀 ↾ (𝑌 × 𝑌)) |
4 | | equivbnd2.1 |
. . . . . . . . 9
⊢ (𝜑 → 𝑀 ∈ (Met‘𝑋)) |
5 | 4 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐷 ∈ (Bnd‘𝑌)) → 𝑀 ∈ (Met‘𝑋)) |
6 | | equivbnd2.2 |
. . . . . . . . 9
⊢ (𝜑 → 𝑁 ∈ (Met‘𝑋)) |
7 | | equivbnd2.8 |
. . . . . . . . . 10
⊢ 𝐷 = (𝑁 ↾ (𝑌 × 𝑌)) |
8 | 7 | bnd2lem 32760 |
. . . . . . . . 9
⊢ ((𝑁 ∈ (Met‘𝑋) ∧ 𝐷 ∈ (Bnd‘𝑌)) → 𝑌 ⊆ 𝑋) |
9 | 6, 8 | sylan 487 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐷 ∈ (Bnd‘𝑌)) → 𝑌 ⊆ 𝑋) |
10 | | metres2 21978 |
. . . . . . . 8
⊢ ((𝑀 ∈ (Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) → (𝑀 ↾ (𝑌 × 𝑌)) ∈ (Met‘𝑌)) |
11 | 5, 9, 10 | syl2anc 691 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐷 ∈ (Bnd‘𝑌)) → (𝑀 ↾ (𝑌 × 𝑌)) ∈ (Met‘𝑌)) |
12 | 3, 11 | syl5eqel 2692 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐷 ∈ (Bnd‘𝑌)) → 𝐶 ∈ (Met‘𝑌)) |
13 | | equivbnd2.4 |
. . . . . . 7
⊢ (𝜑 → 𝑆 ∈
ℝ+) |
14 | 13 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐷 ∈ (Bnd‘𝑌)) → 𝑆 ∈
ℝ+) |
15 | 9 | sselda 3568 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐷 ∈ (Bnd‘𝑌)) ∧ 𝑥 ∈ 𝑌) → 𝑥 ∈ 𝑋) |
16 | 9 | sselda 3568 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐷 ∈ (Bnd‘𝑌)) ∧ 𝑦 ∈ 𝑌) → 𝑦 ∈ 𝑋) |
17 | 15, 16 | anim12dan 878 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐷 ∈ (Bnd‘𝑌)) ∧ (𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌)) → (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) |
18 | | equivbnd2.6 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥𝑀𝑦) ≤ (𝑆 · (𝑥𝑁𝑦))) |
19 | 18 | adantlr 747 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐷 ∈ (Bnd‘𝑌)) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥𝑀𝑦) ≤ (𝑆 · (𝑥𝑁𝑦))) |
20 | 17, 19 | syldan 486 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐷 ∈ (Bnd‘𝑌)) ∧ (𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌)) → (𝑥𝑀𝑦) ≤ (𝑆 · (𝑥𝑁𝑦))) |
21 | 3 | oveqi 6562 |
. . . . . . . . 9
⊢ (𝑥𝐶𝑦) = (𝑥(𝑀 ↾ (𝑌 × 𝑌))𝑦) |
22 | | ovres 6698 |
. . . . . . . . 9
⊢ ((𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌) → (𝑥(𝑀 ↾ (𝑌 × 𝑌))𝑦) = (𝑥𝑀𝑦)) |
23 | 21, 22 | syl5eq 2656 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌) → (𝑥𝐶𝑦) = (𝑥𝑀𝑦)) |
24 | 23 | adantl 481 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐷 ∈ (Bnd‘𝑌)) ∧ (𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌)) → (𝑥𝐶𝑦) = (𝑥𝑀𝑦)) |
25 | 7 | oveqi 6562 |
. . . . . . . . . 10
⊢ (𝑥𝐷𝑦) = (𝑥(𝑁 ↾ (𝑌 × 𝑌))𝑦) |
26 | | ovres 6698 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌) → (𝑥(𝑁 ↾ (𝑌 × 𝑌))𝑦) = (𝑥𝑁𝑦)) |
27 | 25, 26 | syl5eq 2656 |
. . . . . . . . 9
⊢ ((𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌) → (𝑥𝐷𝑦) = (𝑥𝑁𝑦)) |
28 | 27 | adantl 481 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝐷 ∈ (Bnd‘𝑌)) ∧ (𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌)) → (𝑥𝐷𝑦) = (𝑥𝑁𝑦)) |
29 | 28 | oveq2d 6565 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐷 ∈ (Bnd‘𝑌)) ∧ (𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌)) → (𝑆 · (𝑥𝐷𝑦)) = (𝑆 · (𝑥𝑁𝑦))) |
30 | 20, 24, 29 | 3brtr4d 4615 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐷 ∈ (Bnd‘𝑌)) ∧ (𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌)) → (𝑥𝐶𝑦) ≤ (𝑆 · (𝑥𝐷𝑦))) |
31 | 2, 12, 14, 30 | equivbnd 32759 |
. . . . 5
⊢ ((𝜑 ∧ 𝐷 ∈ (Bnd‘𝑌)) → 𝐶 ∈ (Bnd‘𝑌)) |
32 | | equivbnd2.9 |
. . . . . 6
⊢ (𝜑 → (𝐶 ∈ (TotBnd‘𝑌) ↔ 𝐶 ∈ (Bnd‘𝑌))) |
33 | 32 | biimpar 501 |
. . . . 5
⊢ ((𝜑 ∧ 𝐶 ∈ (Bnd‘𝑌)) → 𝐶 ∈ (TotBnd‘𝑌)) |
34 | 31, 33 | syldan 486 |
. . . 4
⊢ ((𝜑 ∧ 𝐷 ∈ (Bnd‘𝑌)) → 𝐶 ∈ (TotBnd‘𝑌)) |
35 | | bndmet 32750 |
. . . . 5
⊢ (𝐷 ∈ (Bnd‘𝑌) → 𝐷 ∈ (Met‘𝑌)) |
36 | 35 | adantl 481 |
. . . 4
⊢ ((𝜑 ∧ 𝐷 ∈ (Bnd‘𝑌)) → 𝐷 ∈ (Met‘𝑌)) |
37 | | equivbnd2.3 |
. . . . 5
⊢ (𝜑 → 𝑅 ∈
ℝ+) |
38 | 37 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝐷 ∈ (Bnd‘𝑌)) → 𝑅 ∈
ℝ+) |
39 | | equivbnd2.5 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥𝑁𝑦) ≤ (𝑅 · (𝑥𝑀𝑦))) |
40 | 39 | adantlr 747 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐷 ∈ (Bnd‘𝑌)) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥𝑁𝑦) ≤ (𝑅 · (𝑥𝑀𝑦))) |
41 | 17, 40 | syldan 486 |
. . . . 5
⊢ (((𝜑 ∧ 𝐷 ∈ (Bnd‘𝑌)) ∧ (𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌)) → (𝑥𝑁𝑦) ≤ (𝑅 · (𝑥𝑀𝑦))) |
42 | 24 | oveq2d 6565 |
. . . . 5
⊢ (((𝜑 ∧ 𝐷 ∈ (Bnd‘𝑌)) ∧ (𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌)) → (𝑅 · (𝑥𝐶𝑦)) = (𝑅 · (𝑥𝑀𝑦))) |
43 | 41, 28, 42 | 3brtr4d 4615 |
. . . 4
⊢ (((𝜑 ∧ 𝐷 ∈ (Bnd‘𝑌)) ∧ (𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌)) → (𝑥𝐷𝑦) ≤ (𝑅 · (𝑥𝐶𝑦))) |
44 | 34, 36, 38, 43 | equivtotbnd 32747 |
. . 3
⊢ ((𝜑 ∧ 𝐷 ∈ (Bnd‘𝑌)) → 𝐷 ∈ (TotBnd‘𝑌)) |
45 | 44 | ex 449 |
. 2
⊢ (𝜑 → (𝐷 ∈ (Bnd‘𝑌) → 𝐷 ∈ (TotBnd‘𝑌))) |
46 | 1, 45 | impbid2 215 |
1
⊢ (𝜑 → (𝐷 ∈ (TotBnd‘𝑌) ↔ 𝐷 ∈ (Bnd‘𝑌))) |