Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  equivbnd2 Structured version   Visualization version   GIF version

Theorem equivbnd2 32761
Description: If balls are totally bounded in the metric 𝑀, then balls are totally bounded in the equivalent metric 𝑁. (Contributed by Mario Carneiro, 15-Sep-2015.)
Hypotheses
Ref Expression
equivbnd2.1 (𝜑𝑀 ∈ (Met‘𝑋))
equivbnd2.2 (𝜑𝑁 ∈ (Met‘𝑋))
equivbnd2.3 (𝜑𝑅 ∈ ℝ+)
equivbnd2.4 (𝜑𝑆 ∈ ℝ+)
equivbnd2.5 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝑁𝑦) ≤ (𝑅 · (𝑥𝑀𝑦)))
equivbnd2.6 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝑀𝑦) ≤ (𝑆 · (𝑥𝑁𝑦)))
equivbnd2.7 𝐶 = (𝑀 ↾ (𝑌 × 𝑌))
equivbnd2.8 𝐷 = (𝑁 ↾ (𝑌 × 𝑌))
equivbnd2.9 (𝜑 → (𝐶 ∈ (TotBnd‘𝑌) ↔ 𝐶 ∈ (Bnd‘𝑌)))
Assertion
Ref Expression
equivbnd2 (𝜑 → (𝐷 ∈ (TotBnd‘𝑌) ↔ 𝐷 ∈ (Bnd‘𝑌)))
Distinct variable groups:   𝑥,𝑦,𝐶   𝑥,𝐷,𝑦   𝜑,𝑥,𝑦   𝑥,𝑅,𝑦   𝑥,𝑆,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   𝑀(𝑥,𝑦)   𝑁(𝑥,𝑦)   𝑋(𝑥,𝑦)

Proof of Theorem equivbnd2
StepHypRef Expression
1 totbndbnd 32758 . 2 (𝐷 ∈ (TotBnd‘𝑌) → 𝐷 ∈ (Bnd‘𝑌))
2 simpr 476 . . . . . 6 ((𝜑𝐷 ∈ (Bnd‘𝑌)) → 𝐷 ∈ (Bnd‘𝑌))
3 equivbnd2.7 . . . . . . 7 𝐶 = (𝑀 ↾ (𝑌 × 𝑌))
4 equivbnd2.1 . . . . . . . . 9 (𝜑𝑀 ∈ (Met‘𝑋))
54adantr 480 . . . . . . . 8 ((𝜑𝐷 ∈ (Bnd‘𝑌)) → 𝑀 ∈ (Met‘𝑋))
6 equivbnd2.2 . . . . . . . . 9 (𝜑𝑁 ∈ (Met‘𝑋))
7 equivbnd2.8 . . . . . . . . . 10 𝐷 = (𝑁 ↾ (𝑌 × 𝑌))
87bnd2lem 32760 . . . . . . . . 9 ((𝑁 ∈ (Met‘𝑋) ∧ 𝐷 ∈ (Bnd‘𝑌)) → 𝑌𝑋)
96, 8sylan 487 . . . . . . . 8 ((𝜑𝐷 ∈ (Bnd‘𝑌)) → 𝑌𝑋)
10 metres2 21978 . . . . . . . 8 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) → (𝑀 ↾ (𝑌 × 𝑌)) ∈ (Met‘𝑌))
115, 9, 10syl2anc 691 . . . . . . 7 ((𝜑𝐷 ∈ (Bnd‘𝑌)) → (𝑀 ↾ (𝑌 × 𝑌)) ∈ (Met‘𝑌))
123, 11syl5eqel 2692 . . . . . 6 ((𝜑𝐷 ∈ (Bnd‘𝑌)) → 𝐶 ∈ (Met‘𝑌))
13 equivbnd2.4 . . . . . . 7 (𝜑𝑆 ∈ ℝ+)
1413adantr 480 . . . . . 6 ((𝜑𝐷 ∈ (Bnd‘𝑌)) → 𝑆 ∈ ℝ+)
159sselda 3568 . . . . . . . . 9 (((𝜑𝐷 ∈ (Bnd‘𝑌)) ∧ 𝑥𝑌) → 𝑥𝑋)
169sselda 3568 . . . . . . . . 9 (((𝜑𝐷 ∈ (Bnd‘𝑌)) ∧ 𝑦𝑌) → 𝑦𝑋)
1715, 16anim12dan 878 . . . . . . . 8 (((𝜑𝐷 ∈ (Bnd‘𝑌)) ∧ (𝑥𝑌𝑦𝑌)) → (𝑥𝑋𝑦𝑋))
18 equivbnd2.6 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝑀𝑦) ≤ (𝑆 · (𝑥𝑁𝑦)))
1918adantlr 747 . . . . . . . 8 (((𝜑𝐷 ∈ (Bnd‘𝑌)) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝑀𝑦) ≤ (𝑆 · (𝑥𝑁𝑦)))
2017, 19syldan 486 . . . . . . 7 (((𝜑𝐷 ∈ (Bnd‘𝑌)) ∧ (𝑥𝑌𝑦𝑌)) → (𝑥𝑀𝑦) ≤ (𝑆 · (𝑥𝑁𝑦)))
213oveqi 6562 . . . . . . . . 9 (𝑥𝐶𝑦) = (𝑥(𝑀 ↾ (𝑌 × 𝑌))𝑦)
22 ovres 6698 . . . . . . . . 9 ((𝑥𝑌𝑦𝑌) → (𝑥(𝑀 ↾ (𝑌 × 𝑌))𝑦) = (𝑥𝑀𝑦))
2321, 22syl5eq 2656 . . . . . . . 8 ((𝑥𝑌𝑦𝑌) → (𝑥𝐶𝑦) = (𝑥𝑀𝑦))
2423adantl 481 . . . . . . 7 (((𝜑𝐷 ∈ (Bnd‘𝑌)) ∧ (𝑥𝑌𝑦𝑌)) → (𝑥𝐶𝑦) = (𝑥𝑀𝑦))
257oveqi 6562 . . . . . . . . . 10 (𝑥𝐷𝑦) = (𝑥(𝑁 ↾ (𝑌 × 𝑌))𝑦)
26 ovres 6698 . . . . . . . . . 10 ((𝑥𝑌𝑦𝑌) → (𝑥(𝑁 ↾ (𝑌 × 𝑌))𝑦) = (𝑥𝑁𝑦))
2725, 26syl5eq 2656 . . . . . . . . 9 ((𝑥𝑌𝑦𝑌) → (𝑥𝐷𝑦) = (𝑥𝑁𝑦))
2827adantl 481 . . . . . . . 8 (((𝜑𝐷 ∈ (Bnd‘𝑌)) ∧ (𝑥𝑌𝑦𝑌)) → (𝑥𝐷𝑦) = (𝑥𝑁𝑦))
2928oveq2d 6565 . . . . . . 7 (((𝜑𝐷 ∈ (Bnd‘𝑌)) ∧ (𝑥𝑌𝑦𝑌)) → (𝑆 · (𝑥𝐷𝑦)) = (𝑆 · (𝑥𝑁𝑦)))
3020, 24, 293brtr4d 4615 . . . . . 6 (((𝜑𝐷 ∈ (Bnd‘𝑌)) ∧ (𝑥𝑌𝑦𝑌)) → (𝑥𝐶𝑦) ≤ (𝑆 · (𝑥𝐷𝑦)))
312, 12, 14, 30equivbnd 32759 . . . . 5 ((𝜑𝐷 ∈ (Bnd‘𝑌)) → 𝐶 ∈ (Bnd‘𝑌))
32 equivbnd2.9 . . . . . 6 (𝜑 → (𝐶 ∈ (TotBnd‘𝑌) ↔ 𝐶 ∈ (Bnd‘𝑌)))
3332biimpar 501 . . . . 5 ((𝜑𝐶 ∈ (Bnd‘𝑌)) → 𝐶 ∈ (TotBnd‘𝑌))
3431, 33syldan 486 . . . 4 ((𝜑𝐷 ∈ (Bnd‘𝑌)) → 𝐶 ∈ (TotBnd‘𝑌))
35 bndmet 32750 . . . . 5 (𝐷 ∈ (Bnd‘𝑌) → 𝐷 ∈ (Met‘𝑌))
3635adantl 481 . . . 4 ((𝜑𝐷 ∈ (Bnd‘𝑌)) → 𝐷 ∈ (Met‘𝑌))
37 equivbnd2.3 . . . . 5 (𝜑𝑅 ∈ ℝ+)
3837adantr 480 . . . 4 ((𝜑𝐷 ∈ (Bnd‘𝑌)) → 𝑅 ∈ ℝ+)
39 equivbnd2.5 . . . . . . 7 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝑁𝑦) ≤ (𝑅 · (𝑥𝑀𝑦)))
4039adantlr 747 . . . . . 6 (((𝜑𝐷 ∈ (Bnd‘𝑌)) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝑁𝑦) ≤ (𝑅 · (𝑥𝑀𝑦)))
4117, 40syldan 486 . . . . 5 (((𝜑𝐷 ∈ (Bnd‘𝑌)) ∧ (𝑥𝑌𝑦𝑌)) → (𝑥𝑁𝑦) ≤ (𝑅 · (𝑥𝑀𝑦)))
4224oveq2d 6565 . . . . 5 (((𝜑𝐷 ∈ (Bnd‘𝑌)) ∧ (𝑥𝑌𝑦𝑌)) → (𝑅 · (𝑥𝐶𝑦)) = (𝑅 · (𝑥𝑀𝑦)))
4341, 28, 423brtr4d 4615 . . . 4 (((𝜑𝐷 ∈ (Bnd‘𝑌)) ∧ (𝑥𝑌𝑦𝑌)) → (𝑥𝐷𝑦) ≤ (𝑅 · (𝑥𝐶𝑦)))
4434, 36, 38, 43equivtotbnd 32747 . . 3 ((𝜑𝐷 ∈ (Bnd‘𝑌)) → 𝐷 ∈ (TotBnd‘𝑌))
4544ex 449 . 2 (𝜑 → (𝐷 ∈ (Bnd‘𝑌) → 𝐷 ∈ (TotBnd‘𝑌)))
461, 45impbid2 215 1 (𝜑 → (𝐷 ∈ (TotBnd‘𝑌) ↔ 𝐷 ∈ (Bnd‘𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wss 3540   class class class wbr 4583   × cxp 5036  cres 5040  cfv 5804  (class class class)co 6549   · cmul 9820  cle 9954  +crp 11708  Metcme 19553  TotBndctotbnd 32735  Bndcbnd 32736
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-ec 7631  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-2 10956  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-icc 12053  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-totbnd 32737  df-bnd 32748
This theorem is referenced by:  rrntotbnd  32805
  Copyright terms: Public domain W3C validator