Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  equivbnd Structured version   Visualization version   GIF version

Theorem equivbnd 32759
Description: If the metric 𝑀 is "strongly finer" than 𝑁 (meaning that there is a positive real constant 𝑅 such that 𝑁(𝑥, 𝑦) ≤ 𝑅 · 𝑀(𝑥, 𝑦)), then boundedness of 𝑀 implies boundedness of 𝑁. (Using this theorem twice in each direction states that if two metrics are strongly equivalent, then one is bounded iff the other is.) (Contributed by Mario Carneiro, 14-Sep-2015.)
Hypotheses
Ref Expression
equivbnd.1 (𝜑𝑀 ∈ (Bnd‘𝑋))
equivbnd.2 (𝜑𝑁 ∈ (Met‘𝑋))
equivbnd.3 (𝜑𝑅 ∈ ℝ+)
equivbnd.4 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝑁𝑦) ≤ (𝑅 · (𝑥𝑀𝑦)))
Assertion
Ref Expression
equivbnd (𝜑𝑁 ∈ (Bnd‘𝑋))
Distinct variable groups:   𝑥,𝑦,𝑀   𝑥,𝑁,𝑦   𝜑,𝑥,𝑦   𝑥,𝑋,𝑦   𝑥,𝑅,𝑦

Proof of Theorem equivbnd
Dummy variables 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 equivbnd.2 . 2 (𝜑𝑁 ∈ (Met‘𝑋))
2 equivbnd.1 . . . 4 (𝜑𝑀 ∈ (Bnd‘𝑋))
3 isbnd3b 32754 . . . . 5 (𝑀 ∈ (Bnd‘𝑋) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∃𝑟 ∈ ℝ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) ≤ 𝑟))
43simprbi 479 . . . 4 (𝑀 ∈ (Bnd‘𝑋) → ∃𝑟 ∈ ℝ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) ≤ 𝑟)
52, 4syl 17 . . 3 (𝜑 → ∃𝑟 ∈ ℝ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) ≤ 𝑟)
6 equivbnd.3 . . . . . . 7 (𝜑𝑅 ∈ ℝ+)
76rpred 11748 . . . . . 6 (𝜑𝑅 ∈ ℝ)
8 remulcl 9900 . . . . . 6 ((𝑅 ∈ ℝ ∧ 𝑟 ∈ ℝ) → (𝑅 · 𝑟) ∈ ℝ)
97, 8sylan 487 . . . . 5 ((𝜑𝑟 ∈ ℝ) → (𝑅 · 𝑟) ∈ ℝ)
10 bndmet 32750 . . . . . . . . . . 11 (𝑀 ∈ (Bnd‘𝑋) → 𝑀 ∈ (Met‘𝑋))
112, 10syl 17 . . . . . . . . . 10 (𝜑𝑀 ∈ (Met‘𝑋))
1211adantr 480 . . . . . . . . 9 ((𝜑𝑟 ∈ ℝ) → 𝑀 ∈ (Met‘𝑋))
13 metcl 21947 . . . . . . . . . 10 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑥𝑋𝑦𝑋) → (𝑥𝑀𝑦) ∈ ℝ)
14133expb 1258 . . . . . . . . 9 ((𝑀 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝑀𝑦) ∈ ℝ)
1512, 14sylan 487 . . . . . . . 8 (((𝜑𝑟 ∈ ℝ) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝑀𝑦) ∈ ℝ)
16 simplr 788 . . . . . . . 8 (((𝜑𝑟 ∈ ℝ) ∧ (𝑥𝑋𝑦𝑋)) → 𝑟 ∈ ℝ)
176ad2antrr 758 . . . . . . . 8 (((𝜑𝑟 ∈ ℝ) ∧ (𝑥𝑋𝑦𝑋)) → 𝑅 ∈ ℝ+)
1815, 16, 17lemul2d 11792 . . . . . . 7 (((𝜑𝑟 ∈ ℝ) ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥𝑀𝑦) ≤ 𝑟 ↔ (𝑅 · (𝑥𝑀𝑦)) ≤ (𝑅 · 𝑟)))
19 equivbnd.4 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝑁𝑦) ≤ (𝑅 · (𝑥𝑀𝑦)))
2019adantlr 747 . . . . . . . 8 (((𝜑𝑟 ∈ ℝ) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝑁𝑦) ≤ (𝑅 · (𝑥𝑀𝑦)))
211adantr 480 . . . . . . . . . 10 ((𝜑𝑟 ∈ ℝ) → 𝑁 ∈ (Met‘𝑋))
22 metcl 21947 . . . . . . . . . . 11 ((𝑁 ∈ (Met‘𝑋) ∧ 𝑥𝑋𝑦𝑋) → (𝑥𝑁𝑦) ∈ ℝ)
23223expb 1258 . . . . . . . . . 10 ((𝑁 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝑁𝑦) ∈ ℝ)
2421, 23sylan 487 . . . . . . . . 9 (((𝜑𝑟 ∈ ℝ) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝑁𝑦) ∈ ℝ)
257ad2antrr 758 . . . . . . . . . 10 (((𝜑𝑟 ∈ ℝ) ∧ (𝑥𝑋𝑦𝑋)) → 𝑅 ∈ ℝ)
2625, 15remulcld 9949 . . . . . . . . 9 (((𝜑𝑟 ∈ ℝ) ∧ (𝑥𝑋𝑦𝑋)) → (𝑅 · (𝑥𝑀𝑦)) ∈ ℝ)
279adantr 480 . . . . . . . . 9 (((𝜑𝑟 ∈ ℝ) ∧ (𝑥𝑋𝑦𝑋)) → (𝑅 · 𝑟) ∈ ℝ)
28 letr 10010 . . . . . . . . 9 (((𝑥𝑁𝑦) ∈ ℝ ∧ (𝑅 · (𝑥𝑀𝑦)) ∈ ℝ ∧ (𝑅 · 𝑟) ∈ ℝ) → (((𝑥𝑁𝑦) ≤ (𝑅 · (𝑥𝑀𝑦)) ∧ (𝑅 · (𝑥𝑀𝑦)) ≤ (𝑅 · 𝑟)) → (𝑥𝑁𝑦) ≤ (𝑅 · 𝑟)))
2924, 26, 27, 28syl3anc 1318 . . . . . . . 8 (((𝜑𝑟 ∈ ℝ) ∧ (𝑥𝑋𝑦𝑋)) → (((𝑥𝑁𝑦) ≤ (𝑅 · (𝑥𝑀𝑦)) ∧ (𝑅 · (𝑥𝑀𝑦)) ≤ (𝑅 · 𝑟)) → (𝑥𝑁𝑦) ≤ (𝑅 · 𝑟)))
3020, 29mpand 707 . . . . . . 7 (((𝜑𝑟 ∈ ℝ) ∧ (𝑥𝑋𝑦𝑋)) → ((𝑅 · (𝑥𝑀𝑦)) ≤ (𝑅 · 𝑟) → (𝑥𝑁𝑦) ≤ (𝑅 · 𝑟)))
3118, 30sylbid 229 . . . . . 6 (((𝜑𝑟 ∈ ℝ) ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥𝑀𝑦) ≤ 𝑟 → (𝑥𝑁𝑦) ≤ (𝑅 · 𝑟)))
3231ralimdvva 2947 . . . . 5 ((𝜑𝑟 ∈ ℝ) → (∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) ≤ 𝑟 → ∀𝑥𝑋𝑦𝑋 (𝑥𝑁𝑦) ≤ (𝑅 · 𝑟)))
33 breq2 4587 . . . . . . 7 (𝑠 = (𝑅 · 𝑟) → ((𝑥𝑁𝑦) ≤ 𝑠 ↔ (𝑥𝑁𝑦) ≤ (𝑅 · 𝑟)))
34332ralbidv 2972 . . . . . 6 (𝑠 = (𝑅 · 𝑟) → (∀𝑥𝑋𝑦𝑋 (𝑥𝑁𝑦) ≤ 𝑠 ↔ ∀𝑥𝑋𝑦𝑋 (𝑥𝑁𝑦) ≤ (𝑅 · 𝑟)))
3534rspcev 3282 . . . . 5 (((𝑅 · 𝑟) ∈ ℝ ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑁𝑦) ≤ (𝑅 · 𝑟)) → ∃𝑠 ∈ ℝ ∀𝑥𝑋𝑦𝑋 (𝑥𝑁𝑦) ≤ 𝑠)
369, 32, 35syl6an 566 . . . 4 ((𝜑𝑟 ∈ ℝ) → (∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) ≤ 𝑟 → ∃𝑠 ∈ ℝ ∀𝑥𝑋𝑦𝑋 (𝑥𝑁𝑦) ≤ 𝑠))
3736rexlimdva 3013 . . 3 (𝜑 → (∃𝑟 ∈ ℝ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) ≤ 𝑟 → ∃𝑠 ∈ ℝ ∀𝑥𝑋𝑦𝑋 (𝑥𝑁𝑦) ≤ 𝑠))
385, 37mpd 15 . 2 (𝜑 → ∃𝑠 ∈ ℝ ∀𝑥𝑋𝑦𝑋 (𝑥𝑁𝑦) ≤ 𝑠)
39 isbnd3b 32754 . 2 (𝑁 ∈ (Bnd‘𝑋) ↔ (𝑁 ∈ (Met‘𝑋) ∧ ∃𝑠 ∈ ℝ ∀𝑥𝑋𝑦𝑋 (𝑥𝑁𝑦) ≤ 𝑠))
401, 38, 39sylanbrc 695 1 (𝜑𝑁 ∈ (Bnd‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  wral 2896  wrex 2897   class class class wbr 4583  cfv 5804  (class class class)co 6549  cr 9814   · cmul 9820  cle 9954  +crp 11708  Metcme 19553  Bndcbnd 32736
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-er 7629  df-ec 7631  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-2 10956  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-icc 12053  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-bnd 32748
This theorem is referenced by:  equivbnd2  32761
  Copyright terms: Public domain W3C validator