MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elmopn2 Structured version   Visualization version   GIF version

Theorem elmopn2 22060
Description: A defining property of an open set of a metric space. (Contributed by NM, 5-May-2007.) (Revised by Mario Carneiro, 12-Nov-2013.)
Hypothesis
Ref Expression
mopnval.1 𝐽 = (MetOpen‘𝐷)
Assertion
Ref Expression
elmopn2 (𝐷 ∈ (∞Met‘𝑋) → (𝐴𝐽 ↔ (𝐴𝑋 ∧ ∀𝑥𝐴𝑦 ∈ ℝ+ (𝑥(ball‘𝐷)𝑦) ⊆ 𝐴)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐷,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐽(𝑥,𝑦)

Proof of Theorem elmopn2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 mopnval.1 . . 3 𝐽 = (MetOpen‘𝐷)
21elmopn 22057 . 2 (𝐷 ∈ (∞Met‘𝑋) → (𝐴𝐽 ↔ (𝐴𝑋 ∧ ∀𝑥𝐴𝑧 ∈ ran (ball‘𝐷)(𝑥𝑧𝑧𝐴))))
3 ssel2 3563 . . . . . 6 ((𝐴𝑋𝑥𝐴) → 𝑥𝑋)
4 blssex 22042 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) → (∃𝑧 ∈ ran (ball‘𝐷)(𝑥𝑧𝑧𝐴) ↔ ∃𝑦 ∈ ℝ+ (𝑥(ball‘𝐷)𝑦) ⊆ 𝐴))
53, 4sylan2 490 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝑥𝐴)) → (∃𝑧 ∈ ran (ball‘𝐷)(𝑥𝑧𝑧𝐴) ↔ ∃𝑦 ∈ ℝ+ (𝑥(ball‘𝐷)𝑦) ⊆ 𝐴))
65anassrs 678 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋) ∧ 𝑥𝐴) → (∃𝑧 ∈ ran (ball‘𝐷)(𝑥𝑧𝑧𝐴) ↔ ∃𝑦 ∈ ℝ+ (𝑥(ball‘𝐷)𝑦) ⊆ 𝐴))
76ralbidva 2968 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋) → (∀𝑥𝐴𝑧 ∈ ran (ball‘𝐷)(𝑥𝑧𝑧𝐴) ↔ ∀𝑥𝐴𝑦 ∈ ℝ+ (𝑥(ball‘𝐷)𝑦) ⊆ 𝐴))
87pm5.32da 671 . 2 (𝐷 ∈ (∞Met‘𝑋) → ((𝐴𝑋 ∧ ∀𝑥𝐴𝑧 ∈ ran (ball‘𝐷)(𝑥𝑧𝑧𝐴)) ↔ (𝐴𝑋 ∧ ∀𝑥𝐴𝑦 ∈ ℝ+ (𝑥(ball‘𝐷)𝑦) ⊆ 𝐴)))
92, 8bitrd 267 1 (𝐷 ∈ (∞Met‘𝑋) → (𝐴𝐽 ↔ (𝐴𝑋 ∧ ∀𝑥𝐴𝑦 ∈ ℝ+ (𝑥(ball‘𝐷)𝑦) ⊆ 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wral 2896  wrex 2897  wss 3540  ran crn 5039  cfv 5804  (class class class)co 6549  +crp 11708  ∞Metcxmt 19552  ballcbl 19554  MetOpencmopn 19557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-topgen 15927  df-psmet 19559  df-xmet 19560  df-bl 19562  df-mopn 19563  df-bases 20522
This theorem is referenced by:  metrest  22139  tgioo  22407  xrsmopn  22423  recld2  22425  tpr2rico  29286  dya2icoseg2  29667  opnrebl  31485  opnrebl2  31486
  Copyright terms: Public domain W3C validator