MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elmopn2 Structured version   Unicode version

Theorem elmopn2 20151
Description: A defining property of an open set of a metric space. (Contributed by NM, 5-May-2007.) (Revised by Mario Carneiro, 12-Nov-2013.)
Hypothesis
Ref Expression
mopnval.1  |-  J  =  ( MetOpen `  D )
Assertion
Ref Expression
elmopn2  |-  ( D  e.  ( *Met `  X )  ->  ( A  e.  J  <->  ( A  C_  X  /\  A. x  e.  A  E. y  e.  RR+  ( x (
ball `  D )
y )  C_  A
) ) )
Distinct variable groups:    x, y, A    x, D, y    x, X, y
Allowed substitution hints:    J( x, y)

Proof of Theorem elmopn2
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 mopnval.1 . . 3  |-  J  =  ( MetOpen `  D )
21elmopn 20148 . 2  |-  ( D  e.  ( *Met `  X )  ->  ( A  e.  J  <->  ( A  C_  X  /\  A. x  e.  A  E. z  e.  ran  ( ball `  D
) ( x  e.  z  /\  z  C_  A ) ) ) )
3 ssel2 3458 . . . . . 6  |-  ( ( A  C_  X  /\  x  e.  A )  ->  x  e.  X )
4 blssex 20133 . . . . . 6  |-  ( ( D  e.  ( *Met `  X )  /\  x  e.  X
)  ->  ( E. z  e.  ran  ( ball `  D ) ( x  e.  z  /\  z  C_  A )  <->  E. y  e.  RR+  ( x (
ball `  D )
y )  C_  A
) )
53, 4sylan2 474 . . . . 5  |-  ( ( D  e.  ( *Met `  X )  /\  ( A  C_  X  /\  x  e.  A
) )  ->  ( E. z  e.  ran  ( ball `  D )
( x  e.  z  /\  z  C_  A
)  <->  E. y  e.  RR+  ( x ( ball `  D ) y ) 
C_  A ) )
65anassrs 648 . . . 4  |-  ( ( ( D  e.  ( *Met `  X
)  /\  A  C_  X
)  /\  x  e.  A )  ->  ( E. z  e.  ran  ( ball `  D )
( x  e.  z  /\  z  C_  A
)  <->  E. y  e.  RR+  ( x ( ball `  D ) y ) 
C_  A ) )
76ralbidva 2843 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  A  C_  X
)  ->  ( A. x  e.  A  E. z  e.  ran  ( ball `  D ) ( x  e.  z  /\  z  C_  A )  <->  A. x  e.  A  E. y  e.  RR+  ( x (
ball `  D )
y )  C_  A
) )
87pm5.32da 641 . 2  |-  ( D  e.  ( *Met `  X )  ->  (
( A  C_  X  /\  A. x  e.  A  E. z  e.  ran  ( ball `  D )
( x  e.  z  /\  z  C_  A
) )  <->  ( A  C_  X  /\  A. x  e.  A  E. y  e.  RR+  ( x (
ball `  D )
y )  C_  A
) ) )
92, 8bitrd 253 1  |-  ( D  e.  ( *Met `  X )  ->  ( A  e.  J  <->  ( A  C_  X  /\  A. x  e.  A  E. y  e.  RR+  ( x (
ball `  D )
y )  C_  A
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1370    e. wcel 1758   A.wral 2798   E.wrex 2799    C_ wss 3435   ran crn 4948   ` cfv 5525  (class class class)co 6199   RR+crp 11101   *Metcxmt 17925   ballcbl 17927   MetOpencmopn 17930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4520  ax-nul 4528  ax-pow 4577  ax-pr 4638  ax-un 6481  ax-cnex 9448  ax-resscn 9449  ax-1cn 9450  ax-icn 9451  ax-addcl 9452  ax-addrcl 9453  ax-mulcl 9454  ax-mulrcl 9455  ax-mulcom 9456  ax-addass 9457  ax-mulass 9458  ax-distr 9459  ax-i2m1 9460  ax-1ne0 9461  ax-1rid 9462  ax-rnegex 9463  ax-rrecex 9464  ax-cnre 9465  ax-pre-lttri 9466  ax-pre-lttrn 9467  ax-pre-ltadd 9468  ax-pre-mulgt0 9469  ax-pre-sup 9470
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2649  df-nel 2650  df-ral 2803  df-rex 2804  df-reu 2805  df-rmo 2806  df-rab 2807  df-v 3078  df-sbc 3293  df-csb 3395  df-dif 3438  df-un 3440  df-in 3442  df-ss 3449  df-pss 3451  df-nul 3745  df-if 3899  df-pw 3969  df-sn 3985  df-pr 3987  df-tp 3989  df-op 3991  df-uni 4199  df-iun 4280  df-br 4400  df-opab 4458  df-mpt 4459  df-tr 4493  df-eprel 4739  df-id 4743  df-po 4748  df-so 4749  df-fr 4786  df-we 4788  df-ord 4829  df-on 4830  df-lim 4831  df-suc 4832  df-xp 4953  df-rel 4954  df-cnv 4955  df-co 4956  df-dm 4957  df-rn 4958  df-res 4959  df-ima 4960  df-iota 5488  df-fun 5527  df-fn 5528  df-f 5529  df-f1 5530  df-fo 5531  df-f1o 5532  df-fv 5533  df-riota 6160  df-ov 6202  df-oprab 6203  df-mpt2 6204  df-om 6586  df-1st 6686  df-2nd 6687  df-recs 6941  df-rdg 6975  df-er 7210  df-map 7325  df-en 7420  df-dom 7421  df-sdom 7422  df-sup 7801  df-pnf 9530  df-mnf 9531  df-xr 9532  df-ltxr 9533  df-le 9534  df-sub 9707  df-neg 9708  df-div 10104  df-nn 10433  df-2 10490  df-n0 10690  df-z 10757  df-uz 10972  df-q 11064  df-rp 11102  df-xneg 11199  df-xadd 11200  df-xmul 11201  df-topgen 14500  df-psmet 17933  df-xmet 17934  df-bl 17936  df-mopn 17937  df-bases 18636
This theorem is referenced by:  metrest  20230  tgioo  20504  xrsmopn  20520  recld2  20522  tpr2rico  26486  dya2icoseg2  26836  opnrebl  28662  opnrebl2  28663
  Copyright terms: Public domain W3C validator