MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgredlemb Structured version   Visualization version   GIF version

Theorem efgredlemb 17982
Description: The reduced word that forms the base of the sequence in efgsval 17967 is uniquely determined, given the ending representation. (Contributed by Mario Carneiro, 30-Sep-2015.)
Hypotheses
Ref Expression
efgval.w 𝑊 = ( I ‘Word (𝐼 × 2𝑜))
efgval.r = ( ~FG𝐼)
efgval2.m 𝑀 = (𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩)
efgval2.t 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(#‘𝑣)), 𝑤 ∈ (𝐼 × 2𝑜) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
efgred.d 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
efgred.s 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(#‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((#‘𝑚) − 1)))
efgredlem.1 (𝜑 → ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((#‘(𝑆𝑎)) < (#‘(𝑆𝐴)) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))))
efgredlem.2 (𝜑𝐴 ∈ dom 𝑆)
efgredlem.3 (𝜑𝐵 ∈ dom 𝑆)
efgredlem.4 (𝜑 → (𝑆𝐴) = (𝑆𝐵))
efgredlem.5 (𝜑 → ¬ (𝐴‘0) = (𝐵‘0))
efgredlemb.k 𝐾 = (((#‘𝐴) − 1) − 1)
efgredlemb.l 𝐿 = (((#‘𝐵) − 1) − 1)
efgredlemb.p (𝜑𝑃 ∈ (0...(#‘(𝐴𝐾))))
efgredlemb.q (𝜑𝑄 ∈ (0...(#‘(𝐵𝐿))))
efgredlemb.u (𝜑𝑈 ∈ (𝐼 × 2𝑜))
efgredlemb.v (𝜑𝑉 ∈ (𝐼 × 2𝑜))
efgredlemb.6 (𝜑 → (𝑆𝐴) = (𝑃(𝑇‘(𝐴𝐾))𝑈))
efgredlemb.7 (𝜑 → (𝑆𝐵) = (𝑄(𝑇‘(𝐵𝐿))𝑉))
efgredlemb.8 (𝜑 → ¬ (𝐴𝐾) = (𝐵𝐿))
Assertion
Ref Expression
efgredlemb ¬ 𝜑
Distinct variable groups:   𝑎,𝑏,𝐴   𝑦,𝑎,𝑧,𝑏   𝐿,𝑎,𝑏   𝐾,𝑎,𝑏   𝑡,𝑛,𝑣,𝑤,𝑦,𝑧,𝑃   𝑚,𝑎,𝑛,𝑡,𝑣,𝑤,𝑥,𝑀,𝑏   𝑈,𝑛,𝑣,𝑤,𝑦,𝑧   𝑘,𝑎,𝑇,𝑏,𝑚,𝑡,𝑥   𝑛,𝑉,𝑣,𝑤,𝑦,𝑧   𝑄,𝑛,𝑡,𝑣,𝑤,𝑦,𝑧   𝑊,𝑎,𝑏   𝑘,𝑛,𝑣,𝑤,𝑦,𝑧,𝑊,𝑚,𝑡,𝑥   ,𝑎,𝑏,𝑚,𝑡,𝑥,𝑦,𝑧   𝐵,𝑎,𝑏   𝑆,𝑎,𝑏   𝐼,𝑎,𝑏,𝑚,𝑛,𝑡,𝑣,𝑤,𝑥,𝑦,𝑧   𝐷,𝑎,𝑏,𝑚,𝑡
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛,𝑎,𝑏)   𝐴(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝐵(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝐷(𝑥,𝑦,𝑧,𝑤,𝑣,𝑘,𝑛)   𝑃(𝑥,𝑘,𝑚,𝑎,𝑏)   𝑄(𝑥,𝑘,𝑚,𝑎,𝑏)   (𝑤,𝑣,𝑘,𝑛)   𝑆(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝑇(𝑦,𝑧,𝑤,𝑣,𝑛)   𝑈(𝑥,𝑡,𝑘,𝑚,𝑎,𝑏)   𝐼(𝑘)   𝐾(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝐿(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝑀(𝑦,𝑧,𝑘)   𝑉(𝑥,𝑡,𝑘,𝑚,𝑎,𝑏)

Proof of Theorem efgredlemb
StepHypRef Expression
1 efgval.w . . . . 5 𝑊 = ( I ‘Word (𝐼 × 2𝑜))
2 efgval.r . . . . 5 = ( ~FG𝐼)
3 efgval2.m . . . . 5 𝑀 = (𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩)
4 efgval2.t . . . . 5 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(#‘𝑣)), 𝑤 ∈ (𝐼 × 2𝑜) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
5 efgred.d . . . . 5 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
6 efgred.s . . . . 5 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(#‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((#‘𝑚) − 1)))
7 efgredlem.1 . . . . . 6 (𝜑 → ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((#‘(𝑆𝑎)) < (#‘(𝑆𝐴)) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))))
8 efgredlem.4 . . . . . . 7 (𝜑 → (𝑆𝐴) = (𝑆𝐵))
9 fveq2 6103 . . . . . . . . . 10 ((𝑆𝐴) = (𝑆𝐵) → (#‘(𝑆𝐴)) = (#‘(𝑆𝐵)))
109breq2d 4595 . . . . . . . . 9 ((𝑆𝐴) = (𝑆𝐵) → ((#‘(𝑆𝑎)) < (#‘(𝑆𝐴)) ↔ (#‘(𝑆𝑎)) < (#‘(𝑆𝐵))))
1110imbi1d 330 . . . . . . . 8 ((𝑆𝐴) = (𝑆𝐵) → (((#‘(𝑆𝑎)) < (#‘(𝑆𝐴)) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ↔ ((#‘(𝑆𝑎)) < (#‘(𝑆𝐵)) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0)))))
12112ralbidv 2972 . . . . . . 7 ((𝑆𝐴) = (𝑆𝐵) → (∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((#‘(𝑆𝑎)) < (#‘(𝑆𝐴)) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ↔ ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((#‘(𝑆𝑎)) < (#‘(𝑆𝐵)) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0)))))
138, 12syl 17 . . . . . 6 (𝜑 → (∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((#‘(𝑆𝑎)) < (#‘(𝑆𝐴)) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))) ↔ ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((#‘(𝑆𝑎)) < (#‘(𝑆𝐵)) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0)))))
147, 13mpbid 221 . . . . 5 (𝜑 → ∀𝑎 ∈ dom 𝑆𝑏 ∈ dom 𝑆((#‘(𝑆𝑎)) < (#‘(𝑆𝐵)) → ((𝑆𝑎) = (𝑆𝑏) → (𝑎‘0) = (𝑏‘0))))
15 efgredlem.3 . . . . 5 (𝜑𝐵 ∈ dom 𝑆)
16 efgredlem.2 . . . . 5 (𝜑𝐴 ∈ dom 𝑆)
178eqcomd 2616 . . . . 5 (𝜑 → (𝑆𝐵) = (𝑆𝐴))
18 efgredlem.5 . . . . . 6 (𝜑 → ¬ (𝐴‘0) = (𝐵‘0))
19 eqcom 2617 . . . . . 6 ((𝐴‘0) = (𝐵‘0) ↔ (𝐵‘0) = (𝐴‘0))
2018, 19sylnib 317 . . . . 5 (𝜑 → ¬ (𝐵‘0) = (𝐴‘0))
21 efgredlemb.l . . . . 5 𝐿 = (((#‘𝐵) − 1) − 1)
22 efgredlemb.k . . . . 5 𝐾 = (((#‘𝐴) − 1) − 1)
23 efgredlemb.q . . . . 5 (𝜑𝑄 ∈ (0...(#‘(𝐵𝐿))))
24 efgredlemb.p . . . . 5 (𝜑𝑃 ∈ (0...(#‘(𝐴𝐾))))
25 efgredlemb.v . . . . 5 (𝜑𝑉 ∈ (𝐼 × 2𝑜))
26 efgredlemb.u . . . . 5 (𝜑𝑈 ∈ (𝐼 × 2𝑜))
27 efgredlemb.7 . . . . 5 (𝜑 → (𝑆𝐵) = (𝑄(𝑇‘(𝐵𝐿))𝑉))
28 efgredlemb.6 . . . . 5 (𝜑 → (𝑆𝐴) = (𝑃(𝑇‘(𝐴𝐾))𝑈))
29 efgredlemb.8 . . . . . 6 (𝜑 → ¬ (𝐴𝐾) = (𝐵𝐿))
30 eqcom 2617 . . . . . 6 ((𝐴𝐾) = (𝐵𝐿) ↔ (𝐵𝐿) = (𝐴𝐾))
3129, 30sylnib 317 . . . . 5 (𝜑 → ¬ (𝐵𝐿) = (𝐴𝐾))
321, 2, 3, 4, 5, 6, 14, 15, 16, 17, 20, 21, 22, 23, 24, 25, 26, 27, 28, 31efgredlemc 17981 . . . 4 (𝜑 → (𝑄 ∈ (ℤ𝑃) → (𝐵‘0) = (𝐴‘0)))
3332, 19syl6ibr 241 . . 3 (𝜑 → (𝑄 ∈ (ℤ𝑃) → (𝐴‘0) = (𝐵‘0)))
341, 2, 3, 4, 5, 6, 7, 16, 15, 8, 18, 22, 21, 24, 23, 26, 25, 28, 27, 29efgredlemc 17981 . . 3 (𝜑 → (𝑃 ∈ (ℤ𝑄) → (𝐴‘0) = (𝐵‘0)))
35 elfzelz 12213 . . . . 5 (𝑃 ∈ (0...(#‘(𝐴𝐾))) → 𝑃 ∈ ℤ)
3624, 35syl 17 . . . 4 (𝜑𝑃 ∈ ℤ)
37 elfzelz 12213 . . . . 5 (𝑄 ∈ (0...(#‘(𝐵𝐿))) → 𝑄 ∈ ℤ)
3823, 37syl 17 . . . 4 (𝜑𝑄 ∈ ℤ)
39 uztric 11585 . . . 4 ((𝑃 ∈ ℤ ∧ 𝑄 ∈ ℤ) → (𝑄 ∈ (ℤ𝑃) ∨ 𝑃 ∈ (ℤ𝑄)))
4036, 38, 39syl2anc 691 . . 3 (𝜑 → (𝑄 ∈ (ℤ𝑃) ∨ 𝑃 ∈ (ℤ𝑄)))
4133, 34, 40mpjaod 395 . 2 (𝜑 → (𝐴‘0) = (𝐵‘0))
4241, 18pm2.65i 184 1 ¬ 𝜑
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383   = wceq 1475  wcel 1977  wral 2896  {crab 2900  cdif 3537  c0 3874  {csn 4125  cop 4131  cotp 4133   ciun 4455   class class class wbr 4583  cmpt 4643   I cid 4948   × cxp 5036  dom cdm 5038  ran crn 5039  cfv 5804  (class class class)co 6549  cmpt2 6551  1𝑜c1o 7440  2𝑜c2o 7441  0cc0 9815  1c1 9816   < clt 9953  cmin 10145  cz 11254  cuz 11563  ...cfz 12197  ..^cfzo 12334  #chash 12979  Word cword 13146   splice csplice 13151  ⟨“cs2 13437   ~FG cefg 17942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-ot 4134  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-fzo 12335  df-hash 12980  df-word 13154  df-concat 13156  df-s1 13157  df-substr 13158  df-splice 13159  df-s2 13444
This theorem is referenced by:  efgredlem  17983
  Copyright terms: Public domain W3C validator