MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgredlemb Unicode version

Theorem efgredlemb 15333
Description: The reduced word that forms the base of the sequence in efgsval 15318 is uniquely determined, given the ending representation. (Contributed by Mario Carneiro, 30-Sep-2015.)
Hypotheses
Ref Expression
efgval.w  |-  W  =  (  _I  ` Word  ( I  X.  2o ) )
efgval.r  |-  .~  =  ( ~FG  `  I )
efgval2.m  |-  M  =  ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o 
\  z ) >.
)
efgval2.t  |-  T  =  ( v  e.  W  |->  ( n  e.  ( 0 ... ( # `  v ) ) ,  w  e.  ( I  X.  2o )  |->  ( v splice  <. n ,  n ,  <" w ( M `  w ) "> >. )
) )
efgred.d  |-  D  =  ( W  \  U_ x  e.  W  ran  ( T `  x ) )
efgred.s  |-  S  =  ( m  e.  {
t  e.  (Word  W  \  { (/) } )  |  ( ( t ` 
0 )  e.  D  /\  A. k  e.  ( 1..^ ( # `  t
) ) ( t `
 k )  e. 
ran  ( T `  ( t `  (
k  -  1 ) ) ) ) } 
|->  ( m `  (
( # `  m )  -  1 ) ) )
efgredlem.1  |-  ( ph  ->  A. a  e.  dom  S A. b  e.  dom  S ( ( # `  ( S `  a )
)  <  ( # `  ( S `  A )
)  ->  ( ( S `  a )  =  ( S `  b )  ->  (
a `  0 )  =  ( b ` 
0 ) ) ) )
efgredlem.2  |-  ( ph  ->  A  e.  dom  S
)
efgredlem.3  |-  ( ph  ->  B  e.  dom  S
)
efgredlem.4  |-  ( ph  ->  ( S `  A
)  =  ( S `
 B ) )
efgredlem.5  |-  ( ph  ->  -.  ( A ` 
0 )  =  ( B `  0 ) )
efgredlemb.k  |-  K  =  ( ( ( # `  A )  -  1 )  -  1 )
efgredlemb.l  |-  L  =  ( ( ( # `  B )  -  1 )  -  1 )
efgredlemb.p  |-  ( ph  ->  P  e.  ( 0 ... ( # `  ( A `  K )
) ) )
efgredlemb.q  |-  ( ph  ->  Q  e.  ( 0 ... ( # `  ( B `  L )
) ) )
efgredlemb.u  |-  ( ph  ->  U  e.  ( I  X.  2o ) )
efgredlemb.v  |-  ( ph  ->  V  e.  ( I  X.  2o ) )
efgredlemb.6  |-  ( ph  ->  ( S `  A
)  =  ( P ( T `  ( A `  K )
) U ) )
efgredlemb.7  |-  ( ph  ->  ( S `  B
)  =  ( Q ( T `  ( B `  L )
) V ) )
efgredlemb.8  |-  ( ph  ->  -.  ( A `  K )  =  ( B `  L ) )
Assertion
Ref Expression
efgredlemb  |-  -.  ph
Distinct variable groups:    a, b, A    y, a, z, b    L, a, b    K, a, b    t, n, v, w, y, z, P   
m, a, n, t, v, w, x, M, b    U, n, v, w, y, z    k, a, T, b, m, t, x    n, V, v, w, y, z    Q, n, t, v, w, y, z    W, a, b    k, n, v, w, y, z, W, m, t, x    .~ , a, b, m, t, x, y, z    B, a, b    S, a, b   
I, a, b, m, n, t, v, w, x, y, z    D, a, b, m, t
Allowed substitution hints:    ph( x, y, z, w, v, t, k, m, n, a, b)    A( x, y, z, w, v, t, k, m, n)    B( x, y, z, w, v, t, k, m, n)    D( x, y, z, w, v, k, n)    P( x, k, m, a, b)    Q( x, k, m, a, b)    .~ ( w, v, k, n)    S( x, y, z, w, v, t, k, m, n)    T( y, z, w, v, n)    U( x, t, k, m, a, b)    I( k)    K( x, y, z, w, v, t, k, m, n)    L( x, y, z, w, v, t, k, m, n)    M( y, z, k)    V( x, t, k, m, a, b)

Proof of Theorem efgredlemb
StepHypRef Expression
1 efgval.w . . . . 5  |-  W  =  (  _I  ` Word  ( I  X.  2o ) )
2 efgval.r . . . . 5  |-  .~  =  ( ~FG  `  I )
3 efgval2.m . . . . 5  |-  M  =  ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o 
\  z ) >.
)
4 efgval2.t . . . . 5  |-  T  =  ( v  e.  W  |->  ( n  e.  ( 0 ... ( # `  v ) ) ,  w  e.  ( I  X.  2o )  |->  ( v splice  <. n ,  n ,  <" w ( M `  w ) "> >. )
) )
5 efgred.d . . . . 5  |-  D  =  ( W  \  U_ x  e.  W  ran  ( T `  x ) )
6 efgred.s . . . . 5  |-  S  =  ( m  e.  {
t  e.  (Word  W  \  { (/) } )  |  ( ( t ` 
0 )  e.  D  /\  A. k  e.  ( 1..^ ( # `  t
) ) ( t `
 k )  e. 
ran  ( T `  ( t `  (
k  -  1 ) ) ) ) } 
|->  ( m `  (
( # `  m )  -  1 ) ) )
7 efgredlem.1 . . . . . 6  |-  ( ph  ->  A. a  e.  dom  S A. b  e.  dom  S ( ( # `  ( S `  a )
)  <  ( # `  ( S `  A )
)  ->  ( ( S `  a )  =  ( S `  b )  ->  (
a `  0 )  =  ( b ` 
0 ) ) ) )
8 efgredlem.4 . . . . . . 7  |-  ( ph  ->  ( S `  A
)  =  ( S `
 B ) )
9 fveq2 5687 . . . . . . . . . 10  |-  ( ( S `  A )  =  ( S `  B )  ->  ( # `
 ( S `  A ) )  =  ( # `  ( S `  B )
) )
109breq2d 4184 . . . . . . . . 9  |-  ( ( S `  A )  =  ( S `  B )  ->  (
( # `  ( S `
 a ) )  <  ( # `  ( S `  A )
)  <->  ( # `  ( S `  a )
)  <  ( # `  ( S `  B )
) ) )
1110imbi1d 309 . . . . . . . 8  |-  ( ( S `  A )  =  ( S `  B )  ->  (
( ( # `  ( S `  a )
)  <  ( # `  ( S `  A )
)  ->  ( ( S `  a )  =  ( S `  b )  ->  (
a `  0 )  =  ( b ` 
0 ) ) )  <-> 
( ( # `  ( S `  a )
)  <  ( # `  ( S `  B )
)  ->  ( ( S `  a )  =  ( S `  b )  ->  (
a `  0 )  =  ( b ` 
0 ) ) ) ) )
12112ralbidv 2708 . . . . . . 7  |-  ( ( S `  A )  =  ( S `  B )  ->  ( A. a  e.  dom  S A. b  e.  dom  S ( ( # `  ( S `  a )
)  <  ( # `  ( S `  A )
)  ->  ( ( S `  a )  =  ( S `  b )  ->  (
a `  0 )  =  ( b ` 
0 ) ) )  <->  A. a  e.  dom  S A. b  e.  dom  S ( ( # `  ( S `  a )
)  <  ( # `  ( S `  B )
)  ->  ( ( S `  a )  =  ( S `  b )  ->  (
a `  0 )  =  ( b ` 
0 ) ) ) ) )
138, 12syl 16 . . . . . 6  |-  ( ph  ->  ( A. a  e. 
dom  S A. b  e.  dom  S ( (
# `  ( S `  a ) )  < 
( # `  ( S `
 A ) )  ->  ( ( S `
 a )  =  ( S `  b
)  ->  ( a `  0 )  =  ( b `  0
) ) )  <->  A. a  e.  dom  S A. b  e.  dom  S ( (
# `  ( S `  a ) )  < 
( # `  ( S `
 B ) )  ->  ( ( S `
 a )  =  ( S `  b
)  ->  ( a `  0 )  =  ( b `  0
) ) ) ) )
147, 13mpbid 202 . . . . 5  |-  ( ph  ->  A. a  e.  dom  S A. b  e.  dom  S ( ( # `  ( S `  a )
)  <  ( # `  ( S `  B )
)  ->  ( ( S `  a )  =  ( S `  b )  ->  (
a `  0 )  =  ( b ` 
0 ) ) ) )
15 efgredlem.3 . . . . 5  |-  ( ph  ->  B  e.  dom  S
)
16 efgredlem.2 . . . . 5  |-  ( ph  ->  A  e.  dom  S
)
178eqcomd 2409 . . . . 5  |-  ( ph  ->  ( S `  B
)  =  ( S `
 A ) )
18 efgredlem.5 . . . . . 6  |-  ( ph  ->  -.  ( A ` 
0 )  =  ( B `  0 ) )
19 eqcom 2406 . . . . . 6  |-  ( ( A `  0 )  =  ( B ` 
0 )  <->  ( B `  0 )  =  ( A `  0
) )
2018, 19sylnib 296 . . . . 5  |-  ( ph  ->  -.  ( B ` 
0 )  =  ( A `  0 ) )
21 efgredlemb.l . . . . 5  |-  L  =  ( ( ( # `  B )  -  1 )  -  1 )
22 efgredlemb.k . . . . 5  |-  K  =  ( ( ( # `  A )  -  1 )  -  1 )
23 efgredlemb.q . . . . 5  |-  ( ph  ->  Q  e.  ( 0 ... ( # `  ( B `  L )
) ) )
24 efgredlemb.p . . . . 5  |-  ( ph  ->  P  e.  ( 0 ... ( # `  ( A `  K )
) ) )
25 efgredlemb.v . . . . 5  |-  ( ph  ->  V  e.  ( I  X.  2o ) )
26 efgredlemb.u . . . . 5  |-  ( ph  ->  U  e.  ( I  X.  2o ) )
27 efgredlemb.7 . . . . 5  |-  ( ph  ->  ( S `  B
)  =  ( Q ( T `  ( B `  L )
) V ) )
28 efgredlemb.6 . . . . 5  |-  ( ph  ->  ( S `  A
)  =  ( P ( T `  ( A `  K )
) U ) )
29 efgredlemb.8 . . . . . 6  |-  ( ph  ->  -.  ( A `  K )  =  ( B `  L ) )
30 eqcom 2406 . . . . . 6  |-  ( ( A `  K )  =  ( B `  L )  <->  ( B `  L )  =  ( A `  K ) )
3129, 30sylnib 296 . . . . 5  |-  ( ph  ->  -.  ( B `  L )  =  ( A `  K ) )
321, 2, 3, 4, 5, 6, 14, 15, 16, 17, 20, 21, 22, 23, 24, 25, 26, 27, 28, 31efgredlemc 15332 . . . 4  |-  ( ph  ->  ( Q  e.  (
ZZ>= `  P )  -> 
( B `  0
)  =  ( A `
 0 ) ) )
3332, 19syl6ibr 219 . . 3  |-  ( ph  ->  ( Q  e.  (
ZZ>= `  P )  -> 
( A `  0
)  =  ( B `
 0 ) ) )
341, 2, 3, 4, 5, 6, 7, 16, 15, 8, 18, 22, 21, 24, 23, 26, 25, 28, 27, 29efgredlemc 15332 . . 3  |-  ( ph  ->  ( P  e.  (
ZZ>= `  Q )  -> 
( A `  0
)  =  ( B `
 0 ) ) )
35 elfzelz 11015 . . . . 5  |-  ( P  e.  ( 0 ... ( # `  ( A `  K )
) )  ->  P  e.  ZZ )
3624, 35syl 16 . . . 4  |-  ( ph  ->  P  e.  ZZ )
37 elfzelz 11015 . . . . 5  |-  ( Q  e.  ( 0 ... ( # `  ( B `  L )
) )  ->  Q  e.  ZZ )
3823, 37syl 16 . . . 4  |-  ( ph  ->  Q  e.  ZZ )
39 uztric 10463 . . . 4  |-  ( ( P  e.  ZZ  /\  Q  e.  ZZ )  ->  ( Q  e.  (
ZZ>= `  P )  \/  P  e.  ( ZZ>= `  Q ) ) )
4036, 38, 39syl2anc 643 . . 3  |-  ( ph  ->  ( Q  e.  (
ZZ>= `  P )  \/  P  e.  ( ZZ>= `  Q ) ) )
4133, 34, 40mpjaod 371 . 2  |-  ( ph  ->  ( A `  0
)  =  ( B `
 0 ) )
4241, 18pm2.65i 167 1  |-  -.  ph
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    = wceq 1649    e. wcel 1721   A.wral 2666   {crab 2670    \ cdif 3277   (/)c0 3588   {csn 3774   <.cop 3777   <.cotp 3778   U_ciun 4053   class class class wbr 4172    e. cmpt 4226    _I cid 4453    X. cxp 4835   dom cdm 4837   ran crn 4838   ` cfv 5413  (class class class)co 6040    e. cmpt2 6042   1oc1o 6676   2oc2o 6677   0cc0 8946   1c1 8947    < clt 9076    - cmin 9247   ZZcz 10238   ZZ>=cuz 10444   ...cfz 10999  ..^cfzo 11090   #chash 11573  Word cword 11672   splice csplice 11676   <"cs2 11760   ~FG cefg 15293
This theorem is referenced by:  efgredlem  15334
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-ot 3784  df-uni 3976  df-int 4011  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-2o 6684  df-oadd 6687  df-er 6864  df-map 6979  df-pm 6980  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-card 7782  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-nn 9957  df-2 10014  df-n0 10178  df-z 10239  df-uz 10445  df-rp 10569  df-fz 11000  df-fzo 11091  df-hash 11574  df-word 11678  df-concat 11679  df-s1 11680  df-substr 11681  df-splice 11682  df-s2 11767
  Copyright terms: Public domain W3C validator