MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efglem Structured version   Visualization version   GIF version

Theorem efglem 17952
Description: Lemma for efgval 17953. (Contributed by Mario Carneiro, 27-Sep-2015.)
Hypothesis
Ref Expression
efgval.w 𝑊 = ( I ‘Word (𝐼 × 2𝑜))
Assertion
Ref Expression
efglem 𝑟(𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(#‘𝑥))∀𝑦𝐼𝑧 ∈ 2𝑜 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1𝑜𝑧)⟩”⟩⟩))
Distinct variable groups:   𝑦,𝑟,𝑧,𝑛,𝑥,𝑊   𝑛,𝐼,𝑟,𝑥,𝑦,𝑧

Proof of Theorem efglem
StepHypRef Expression
1 xpider 7705 . 2 (𝑊 × 𝑊) Er 𝑊
2 simpll 786 . . . . 5 (((𝑥𝑊𝑛 ∈ (0...(#‘𝑥))) ∧ (𝑦𝐼𝑧 ∈ 2𝑜)) → 𝑥𝑊)
3 efgval.w . . . . . . . . 9 𝑊 = ( I ‘Word (𝐼 × 2𝑜))
4 fviss 6166 . . . . . . . . 9 ( I ‘Word (𝐼 × 2𝑜)) ⊆ Word (𝐼 × 2𝑜)
53, 4eqsstri 3598 . . . . . . . 8 𝑊 ⊆ Word (𝐼 × 2𝑜)
65, 2sseldi 3566 . . . . . . 7 (((𝑥𝑊𝑛 ∈ (0...(#‘𝑥))) ∧ (𝑦𝐼𝑧 ∈ 2𝑜)) → 𝑥 ∈ Word (𝐼 × 2𝑜))
7 opelxpi 5072 . . . . . . . . 9 ((𝑦𝐼𝑧 ∈ 2𝑜) → ⟨𝑦, 𝑧⟩ ∈ (𝐼 × 2𝑜))
87adantl 481 . . . . . . . 8 (((𝑥𝑊𝑛 ∈ (0...(#‘𝑥))) ∧ (𝑦𝐼𝑧 ∈ 2𝑜)) → ⟨𝑦, 𝑧⟩ ∈ (𝐼 × 2𝑜))
9 2oconcl 7470 . . . . . . . . . 10 (𝑧 ∈ 2𝑜 → (1𝑜𝑧) ∈ 2𝑜)
10 opelxpi 5072 . . . . . . . . . 10 ((𝑦𝐼 ∧ (1𝑜𝑧) ∈ 2𝑜) → ⟨𝑦, (1𝑜𝑧)⟩ ∈ (𝐼 × 2𝑜))
119, 10sylan2 490 . . . . . . . . 9 ((𝑦𝐼𝑧 ∈ 2𝑜) → ⟨𝑦, (1𝑜𝑧)⟩ ∈ (𝐼 × 2𝑜))
1211adantl 481 . . . . . . . 8 (((𝑥𝑊𝑛 ∈ (0...(#‘𝑥))) ∧ (𝑦𝐼𝑧 ∈ 2𝑜)) → ⟨𝑦, (1𝑜𝑧)⟩ ∈ (𝐼 × 2𝑜))
138, 12s2cld 13466 . . . . . . 7 (((𝑥𝑊𝑛 ∈ (0...(#‘𝑥))) ∧ (𝑦𝐼𝑧 ∈ 2𝑜)) → ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1𝑜𝑧)⟩”⟩ ∈ Word (𝐼 × 2𝑜))
14 splcl 13354 . . . . . . 7 ((𝑥 ∈ Word (𝐼 × 2𝑜) ∧ ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1𝑜𝑧)⟩”⟩ ∈ Word (𝐼 × 2𝑜)) → (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1𝑜𝑧)⟩”⟩⟩) ∈ Word (𝐼 × 2𝑜))
156, 13, 14syl2anc 691 . . . . . 6 (((𝑥𝑊𝑛 ∈ (0...(#‘𝑥))) ∧ (𝑦𝐼𝑧 ∈ 2𝑜)) → (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1𝑜𝑧)⟩”⟩⟩) ∈ Word (𝐼 × 2𝑜))
163efgrcl 17951 . . . . . . . 8 (𝑥𝑊 → (𝐼 ∈ V ∧ 𝑊 = Word (𝐼 × 2𝑜)))
1716simprd 478 . . . . . . 7 (𝑥𝑊𝑊 = Word (𝐼 × 2𝑜))
1817ad2antrr 758 . . . . . 6 (((𝑥𝑊𝑛 ∈ (0...(#‘𝑥))) ∧ (𝑦𝐼𝑧 ∈ 2𝑜)) → 𝑊 = Word (𝐼 × 2𝑜))
1915, 18eleqtrrd 2691 . . . . 5 (((𝑥𝑊𝑛 ∈ (0...(#‘𝑥))) ∧ (𝑦𝐼𝑧 ∈ 2𝑜)) → (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1𝑜𝑧)⟩”⟩⟩) ∈ 𝑊)
20 brxp 5071 . . . . 5 (𝑥(𝑊 × 𝑊)(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1𝑜𝑧)⟩”⟩⟩) ↔ (𝑥𝑊 ∧ (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1𝑜𝑧)⟩”⟩⟩) ∈ 𝑊))
212, 19, 20sylanbrc 695 . . . 4 (((𝑥𝑊𝑛 ∈ (0...(#‘𝑥))) ∧ (𝑦𝐼𝑧 ∈ 2𝑜)) → 𝑥(𝑊 × 𝑊)(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1𝑜𝑧)⟩”⟩⟩))
2221ralrimivva 2954 . . 3 ((𝑥𝑊𝑛 ∈ (0...(#‘𝑥))) → ∀𝑦𝐼𝑧 ∈ 2𝑜 𝑥(𝑊 × 𝑊)(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1𝑜𝑧)⟩”⟩⟩))
2322rgen2 2958 . 2 𝑥𝑊𝑛 ∈ (0...(#‘𝑥))∀𝑦𝐼𝑧 ∈ 2𝑜 𝑥(𝑊 × 𝑊)(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1𝑜𝑧)⟩”⟩⟩)
24 fvex 6113 . . . . 5 ( I ‘Word (𝐼 × 2𝑜)) ∈ V
253, 24eqeltri 2684 . . . 4 𝑊 ∈ V
2625, 25xpex 6860 . . 3 (𝑊 × 𝑊) ∈ V
27 ereq1 7636 . . . 4 (𝑟 = (𝑊 × 𝑊) → (𝑟 Er 𝑊 ↔ (𝑊 × 𝑊) Er 𝑊))
28 breq 4585 . . . . . 6 (𝑟 = (𝑊 × 𝑊) → (𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1𝑜𝑧)⟩”⟩⟩) ↔ 𝑥(𝑊 × 𝑊)(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1𝑜𝑧)⟩”⟩⟩)))
29282ralbidv 2972 . . . . 5 (𝑟 = (𝑊 × 𝑊) → (∀𝑦𝐼𝑧 ∈ 2𝑜 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1𝑜𝑧)⟩”⟩⟩) ↔ ∀𝑦𝐼𝑧 ∈ 2𝑜 𝑥(𝑊 × 𝑊)(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1𝑜𝑧)⟩”⟩⟩)))
30292ralbidv 2972 . . . 4 (𝑟 = (𝑊 × 𝑊) → (∀𝑥𝑊𝑛 ∈ (0...(#‘𝑥))∀𝑦𝐼𝑧 ∈ 2𝑜 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1𝑜𝑧)⟩”⟩⟩) ↔ ∀𝑥𝑊𝑛 ∈ (0...(#‘𝑥))∀𝑦𝐼𝑧 ∈ 2𝑜 𝑥(𝑊 × 𝑊)(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1𝑜𝑧)⟩”⟩⟩)))
3127, 30anbi12d 743 . . 3 (𝑟 = (𝑊 × 𝑊) → ((𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(#‘𝑥))∀𝑦𝐼𝑧 ∈ 2𝑜 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1𝑜𝑧)⟩”⟩⟩)) ↔ ((𝑊 × 𝑊) Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(#‘𝑥))∀𝑦𝐼𝑧 ∈ 2𝑜 𝑥(𝑊 × 𝑊)(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1𝑜𝑧)⟩”⟩⟩))))
3226, 31spcev 3273 . 2 (((𝑊 × 𝑊) Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(#‘𝑥))∀𝑦𝐼𝑧 ∈ 2𝑜 𝑥(𝑊 × 𝑊)(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1𝑜𝑧)⟩”⟩⟩)) → ∃𝑟(𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(#‘𝑥))∀𝑦𝐼𝑧 ∈ 2𝑜 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1𝑜𝑧)⟩”⟩⟩)))
331, 23, 32mp2an 704 1 𝑟(𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(#‘𝑥))∀𝑦𝐼𝑧 ∈ 2𝑜 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1𝑜𝑧)⟩”⟩⟩))
Colors of variables: wff setvar class
Syntax hints:  wa 383   = wceq 1475  wex 1695  wcel 1977  wral 2896  Vcvv 3173  cdif 3537  cop 4131  cotp 4133   class class class wbr 4583   I cid 4948   × cxp 5036  cfv 5804  (class class class)co 6549  1𝑜c1o 7440  2𝑜c2o 7441   Er wer 7626  0cc0 9815  ...cfz 12197  #chash 12979  Word cword 13146   splice csplice 13151  ⟨“cs2 13437
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-ot 4134  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-hash 12980  df-word 13154  df-concat 13156  df-s1 13157  df-substr 13158  df-splice 13159  df-s2 13444
This theorem is referenced by:  efgval  17953  efger  17954
  Copyright terms: Public domain W3C validator