Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprd2db Structured version   Visualization version   GIF version

Theorem dprd2db 18265
 Description: The direct product of a collection of direct products. (Contributed by Mario Carneiro, 25-Apr-2016.)
Hypotheses
Ref Expression
dprd2d.1 (𝜑 → Rel 𝐴)
dprd2d.2 (𝜑𝑆:𝐴⟶(SubGrp‘𝐺))
dprd2d.3 (𝜑 → dom 𝐴𝐼)
dprd2d.4 ((𝜑𝑖𝐼) → 𝐺dom DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))
dprd2d.5 (𝜑𝐺dom DProd (𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))))
dprd2d.k 𝐾 = (mrCls‘(SubGrp‘𝐺))
Assertion
Ref Expression
dprd2db (𝜑 → (𝐺 DProd 𝑆) = (𝐺 DProd (𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))))
Distinct variable groups:   𝑖,𝑗,𝐴   𝑖,𝐺,𝑗   𝑖,𝐼   𝑖,𝐾   𝜑,𝑖,𝑗   𝑆,𝑖,𝑗
Allowed substitution hints:   𝐼(𝑗)   𝐾(𝑗)

Proof of Theorem dprd2db
StepHypRef Expression
1 dprd2d.1 . . . 4 (𝜑 → Rel 𝐴)
2 dprd2d.2 . . . 4 (𝜑𝑆:𝐴⟶(SubGrp‘𝐺))
3 dprd2d.3 . . . 4 (𝜑 → dom 𝐴𝐼)
4 dprd2d.4 . . . 4 ((𝜑𝑖𝐼) → 𝐺dom DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))
5 dprd2d.5 . . . 4 (𝜑𝐺dom DProd (𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗)))))
6 dprd2d.k . . . 4 𝐾 = (mrCls‘(SubGrp‘𝐺))
71, 2, 3, 4, 5, 6dprd2da 18264 . . 3 (𝜑𝐺dom DProd 𝑆)
86dprdspan 18249 . . 3 (𝐺dom DProd 𝑆 → (𝐺 DProd 𝑆) = (𝐾 ran 𝑆))
97, 8syl 17 . 2 (𝜑 → (𝐺 DProd 𝑆) = (𝐾 ran 𝑆))
10 relssres 5357 . . . . . . 7 ((Rel 𝐴 ∧ dom 𝐴𝐼) → (𝐴𝐼) = 𝐴)
111, 3, 10syl2anc 691 . . . . . 6 (𝜑 → (𝐴𝐼) = 𝐴)
1211imaeq2d 5385 . . . . 5 (𝜑 → (𝑆 “ (𝐴𝐼)) = (𝑆𝐴))
13 ffn 5958 . . . . . 6 (𝑆:𝐴⟶(SubGrp‘𝐺) → 𝑆 Fn 𝐴)
14 fnima 5923 . . . . . 6 (𝑆 Fn 𝐴 → (𝑆𝐴) = ran 𝑆)
152, 13, 143syl 18 . . . . 5 (𝜑 → (𝑆𝐴) = ran 𝑆)
1612, 15eqtr2d 2645 . . . 4 (𝜑 → ran 𝑆 = (𝑆 “ (𝐴𝐼)))
1716unieqd 4382 . . 3 (𝜑 ran 𝑆 = (𝑆 “ (𝐴𝐼)))
1817fveq2d 6107 . 2 (𝜑 → (𝐾 ran 𝑆) = (𝐾 (𝑆 “ (𝐴𝐼))))
19 ssid 3587 . . . 4 𝐼𝐼
2019a1i 11 . . 3 (𝜑𝐼𝐼)
211, 2, 3, 4, 5, 6, 20dprd2dlem1 18263 . 2 (𝜑 → (𝐾 (𝑆 “ (𝐴𝐼))) = (𝐺 DProd (𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))))
229, 18, 213eqtrd 2648 1 (𝜑 → (𝐺 DProd 𝑆) = (𝐺 DProd (𝑖𝐼 ↦ (𝐺 DProd (𝑗 ∈ (𝐴 “ {𝑖}) ↦ (𝑖𝑆𝑗))))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977   ⊆ wss 3540  {csn 4125  ∪ cuni 4372   class class class wbr 4583   ↦ cmpt 4643  dom cdm 5038  ran crn 5039   ↾ cres 5040   “ cima 5041  Rel wrel 5043   Fn wfn 5799  ⟶wf 5800  ‘cfv 5804  (class class class)co 6549  mrClscmrc 16066  SubGrpcsubg 17411   DProd cdprd 18215 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-tpos 7239  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-seq 12664  df-hash 12980  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-0g 15925  df-gsum 15926  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-mhm 17158  df-submnd 17159  df-grp 17248  df-minusg 17249  df-sbg 17250  df-mulg 17364  df-subg 17414  df-ghm 17481  df-gim 17524  df-cntz 17573  df-oppg 17599  df-lsm 17874  df-cmn 18018  df-dprd 18217 This theorem is referenced by:  dprd2d2  18266
 Copyright terms: Public domain W3C validator