Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > divcan8d | Structured version Visualization version GIF version |
Description: A cancellation law for division. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
Ref | Expression |
---|---|
divcan8d.a | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
divcan8d.b | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
divcan8d.a0 | ⊢ (𝜑 → 𝐴 ≠ 0) |
divcan8d.b0 | ⊢ (𝜑 → 𝐵 ≠ 0) |
Ref | Expression |
---|---|
divcan8d | ⊢ (𝜑 → (𝐵 / (𝐴 · 𝐵)) = (1 / 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | divcan8d.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
2 | divcan8d.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
3 | 2, 1 | mulcld 9939 | . . . 4 ⊢ (𝜑 → (𝐴 · 𝐵) ∈ ℂ) |
4 | divcan8d.a0 | . . . . 5 ⊢ (𝜑 → 𝐴 ≠ 0) | |
5 | divcan8d.b0 | . . . . 5 ⊢ (𝜑 → 𝐵 ≠ 0) | |
6 | 2, 1, 4, 5 | mulne0d 10558 | . . . 4 ⊢ (𝜑 → (𝐴 · 𝐵) ≠ 0) |
7 | 2, 1, 6 | mulne0bbd 10562 | . . . 4 ⊢ (𝜑 → 𝐵 ≠ 0) |
8 | 1, 3, 1, 6, 7 | divcan7d 10708 | . . 3 ⊢ (𝜑 → ((𝐵 / 𝐵) / ((𝐴 · 𝐵) / 𝐵)) = (𝐵 / (𝐴 · 𝐵))) |
9 | 8 | eqcomd 2616 | . 2 ⊢ (𝜑 → (𝐵 / (𝐴 · 𝐵)) = ((𝐵 / 𝐵) / ((𝐴 · 𝐵) / 𝐵))) |
10 | 1, 5 | dividd 10678 | . . 3 ⊢ (𝜑 → (𝐵 / 𝐵) = 1) |
11 | 2, 1, 5 | divcan4d 10686 | . . 3 ⊢ (𝜑 → ((𝐴 · 𝐵) / 𝐵) = 𝐴) |
12 | 10, 11 | oveq12d 6567 | . 2 ⊢ (𝜑 → ((𝐵 / 𝐵) / ((𝐴 · 𝐵) / 𝐵)) = (1 / 𝐴)) |
13 | eqidd 2611 | . 2 ⊢ (𝜑 → (1 / 𝐴) = (1 / 𝐴)) | |
14 | 9, 12, 13 | 3eqtrd 2648 | 1 ⊢ (𝜑 → (𝐵 / (𝐴 · 𝐵)) = (1 / 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1475 ∈ wcel 1977 ≠ wne 2780 (class class class)co 6549 ℂcc 9813 0cc0 9815 1c1 9816 · cmul 9820 / cdiv 10563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-po 4959 df-so 4960 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-er 7629 df-en 7842 df-dom 7843 df-sdom 7844 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-div 10564 |
This theorem is referenced by: dvnxpaek 38832 |
Copyright terms: Public domain | W3C validator |