MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmpt11f Structured version   Visualization version   GIF version

Theorem cnmpt11f 21277
Description: The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
cnmptid.j (𝜑𝐽 ∈ (TopOn‘𝑋))
cnmpt11.a (𝜑 → (𝑥𝑋𝐴) ∈ (𝐽 Cn 𝐾))
cnmpt11f.f (𝜑𝐹 ∈ (𝐾 Cn 𝐿))
Assertion
Ref Expression
cnmpt11f (𝜑 → (𝑥𝑋 ↦ (𝐹𝐴)) ∈ (𝐽 Cn 𝐿))
Distinct variable groups:   𝑥,𝐹   𝜑,𝑥   𝑥,𝐽   𝑥,𝑋   𝑥,𝐾   𝑥,𝐿
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem cnmpt11f
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 cnmptid.j . 2 (𝜑𝐽 ∈ (TopOn‘𝑋))
2 cnmpt11.a . 2 (𝜑 → (𝑥𝑋𝐴) ∈ (𝐽 Cn 𝐾))
3 cntop2 20855 . . . 4 ((𝑥𝑋𝐴) ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top)
42, 3syl 17 . . 3 (𝜑𝐾 ∈ Top)
5 eqid 2610 . . . 4 𝐾 = 𝐾
65toptopon 20548 . . 3 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘ 𝐾))
74, 6sylib 207 . 2 (𝜑𝐾 ∈ (TopOn‘ 𝐾))
8 cnmpt11f.f . . . . 5 (𝜑𝐹 ∈ (𝐾 Cn 𝐿))
9 eqid 2610 . . . . . 6 𝐿 = 𝐿
105, 9cnf 20860 . . . . 5 (𝐹 ∈ (𝐾 Cn 𝐿) → 𝐹: 𝐾 𝐿)
118, 10syl 17 . . . 4 (𝜑𝐹: 𝐾 𝐿)
1211feqmptd 6159 . . 3 (𝜑𝐹 = (𝑦 𝐾 ↦ (𝐹𝑦)))
1312, 8eqeltrrd 2689 . 2 (𝜑 → (𝑦 𝐾 ↦ (𝐹𝑦)) ∈ (𝐾 Cn 𝐿))
14 fveq2 6103 . 2 (𝑦 = 𝐴 → (𝐹𝑦) = (𝐹𝐴))
151, 2, 7, 13, 14cnmpt11 21276 1 (𝜑 → (𝑥𝑋 ↦ (𝐹𝐴)) ∈ (𝐽 Cn 𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 1977   cuni 4372  cmpt 4643  wf 5800  cfv 5804  (class class class)co 6549  Topctop 20517  TopOnctopon 20518   Cn ccn 20838
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-map 7746  df-top 20521  df-topon 20523  df-cn 20841
This theorem is referenced by:  cnmpt12f  21279  tgpmulg  21707  prdstgpd  21738  pcorevcl  22633  pcorevlem  22634  logcn  24193  loglesqrt  24299  efrlim  24496  cvmliftlem8  30528  knoppcnlem10  31662  areacirclem2  32671  areacirclem4  32673
  Copyright terms: Public domain W3C validator