Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tgpmulg | Structured version Visualization version GIF version |
Description: In a topological group, the n-times group multiple function is continuous. (Contributed by Mario Carneiro, 19-Sep-2015.) |
Ref | Expression |
---|---|
tgpmulg.j | ⊢ 𝐽 = (TopOpen‘𝐺) |
tgpmulg.t | ⊢ · = (.g‘𝐺) |
tgpmulg.b | ⊢ 𝐵 = (Base‘𝐺) |
Ref | Expression |
---|---|
tgpmulg | ⊢ ((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) → (𝑥 ∈ 𝐵 ↦ (𝑁 · 𝑥)) ∈ (𝐽 Cn 𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tgptmd 21693 | . . . 4 ⊢ (𝐺 ∈ TopGrp → 𝐺 ∈ TopMnd) | |
2 | tgpmulg.j | . . . . 5 ⊢ 𝐽 = (TopOpen‘𝐺) | |
3 | tgpmulg.t | . . . . 5 ⊢ · = (.g‘𝐺) | |
4 | tgpmulg.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
5 | 2, 3, 4 | tmdmulg 21706 | . . . 4 ⊢ ((𝐺 ∈ TopMnd ∧ 𝑁 ∈ ℕ0) → (𝑥 ∈ 𝐵 ↦ (𝑁 · 𝑥)) ∈ (𝐽 Cn 𝐽)) |
6 | 1, 5 | sylan 487 | . . 3 ⊢ ((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℕ0) → (𝑥 ∈ 𝐵 ↦ (𝑁 · 𝑥)) ∈ (𝐽 Cn 𝐽)) |
7 | 6 | adantlr 747 | . 2 ⊢ (((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ∈ ℕ0) → (𝑥 ∈ 𝐵 ↦ (𝑁 · 𝑥)) ∈ (𝐽 Cn 𝐽)) |
8 | simpllr 795 | . . . . . . . . 9 ⊢ ((((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ 𝐵) → 𝑁 ∈ ℤ) | |
9 | 8 | zcnd 11359 | . . . . . . . 8 ⊢ ((((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ 𝐵) → 𝑁 ∈ ℂ) |
10 | 9 | negnegd 10262 | . . . . . . 7 ⊢ ((((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ 𝐵) → --𝑁 = 𝑁) |
11 | 10 | oveq1d 6564 | . . . . . 6 ⊢ ((((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ 𝐵) → (--𝑁 · 𝑥) = (𝑁 · 𝑥)) |
12 | eqid 2610 | . . . . . . . 8 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
13 | 4, 3, 12 | mulgnegnn 17374 | . . . . . . 7 ⊢ ((-𝑁 ∈ ℕ ∧ 𝑥 ∈ 𝐵) → (--𝑁 · 𝑥) = ((invg‘𝐺)‘(-𝑁 · 𝑥))) |
14 | 13 | adantll 746 | . . . . . 6 ⊢ ((((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ 𝐵) → (--𝑁 · 𝑥) = ((invg‘𝐺)‘(-𝑁 · 𝑥))) |
15 | 11, 14 | eqtr3d 2646 | . . . . 5 ⊢ ((((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ 𝐵) → (𝑁 · 𝑥) = ((invg‘𝐺)‘(-𝑁 · 𝑥))) |
16 | 15 | mpteq2dva 4672 | . . . 4 ⊢ (((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ) → (𝑥 ∈ 𝐵 ↦ (𝑁 · 𝑥)) = (𝑥 ∈ 𝐵 ↦ ((invg‘𝐺)‘(-𝑁 · 𝑥)))) |
17 | 2, 4 | tgptopon 21696 | . . . . . 6 ⊢ (𝐺 ∈ TopGrp → 𝐽 ∈ (TopOn‘𝐵)) |
18 | 17 | ad2antrr 758 | . . . . 5 ⊢ (((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ) → 𝐽 ∈ (TopOn‘𝐵)) |
19 | 1 | adantr 480 | . . . . . 6 ⊢ ((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) → 𝐺 ∈ TopMnd) |
20 | nnnn0 11176 | . . . . . 6 ⊢ (-𝑁 ∈ ℕ → -𝑁 ∈ ℕ0) | |
21 | 2, 3, 4 | tmdmulg 21706 | . . . . . 6 ⊢ ((𝐺 ∈ TopMnd ∧ -𝑁 ∈ ℕ0) → (𝑥 ∈ 𝐵 ↦ (-𝑁 · 𝑥)) ∈ (𝐽 Cn 𝐽)) |
22 | 19, 20, 21 | syl2an 493 | . . . . 5 ⊢ (((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ) → (𝑥 ∈ 𝐵 ↦ (-𝑁 · 𝑥)) ∈ (𝐽 Cn 𝐽)) |
23 | 2, 12 | tgpinv 21699 | . . . . . 6 ⊢ (𝐺 ∈ TopGrp → (invg‘𝐺) ∈ (𝐽 Cn 𝐽)) |
24 | 23 | ad2antrr 758 | . . . . 5 ⊢ (((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ) → (invg‘𝐺) ∈ (𝐽 Cn 𝐽)) |
25 | 18, 22, 24 | cnmpt11f 21277 | . . . 4 ⊢ (((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ) → (𝑥 ∈ 𝐵 ↦ ((invg‘𝐺)‘(-𝑁 · 𝑥))) ∈ (𝐽 Cn 𝐽)) |
26 | 16, 25 | eqeltrd 2688 | . . 3 ⊢ (((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) ∧ -𝑁 ∈ ℕ) → (𝑥 ∈ 𝐵 ↦ (𝑁 · 𝑥)) ∈ (𝐽 Cn 𝐽)) |
27 | 26 | adantrl 748 | . 2 ⊢ (((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝑥 ∈ 𝐵 ↦ (𝑁 · 𝑥)) ∈ (𝐽 Cn 𝐽)) |
28 | simpr 476 | . . 3 ⊢ ((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ) | |
29 | elznn0nn 11268 | . . 3 ⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ))) | |
30 | 28, 29 | sylib 207 | . 2 ⊢ ((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ))) |
31 | 7, 27, 30 | mpjaodan 823 | 1 ⊢ ((𝐺 ∈ TopGrp ∧ 𝑁 ∈ ℤ) → (𝑥 ∈ 𝐵 ↦ (𝑁 · 𝑥)) ∈ (𝐽 Cn 𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 382 ∧ wa 383 = wceq 1475 ∈ wcel 1977 ↦ cmpt 4643 ‘cfv 5804 (class class class)co 6549 ℝcr 9814 -cneg 10146 ℕcn 10897 ℕ0cn0 11169 ℤcz 11254 Basecbs 15695 TopOpenctopn 15905 invgcminusg 17246 .gcmg 17363 TopOnctopon 20518 Cn ccn 20838 TopMndctmd 21684 TopGrpctgp 21685 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-inf2 8421 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-1st 7059 df-2nd 7060 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-er 7629 df-map 7746 df-en 7842 df-dom 7843 df-sdom 7844 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-nn 10898 df-n0 11170 df-z 11255 df-uz 11564 df-seq 12664 df-0g 15925 df-topgen 15927 df-plusf 17064 df-mgm 17065 df-sgrp 17107 df-mnd 17118 df-mulg 17364 df-top 20521 df-bases 20522 df-topon 20523 df-topsp 20524 df-cn 20841 df-cnp 20842 df-tx 21175 df-tmd 21686 df-tgp 21687 |
This theorem is referenced by: tgpmulg2 21708 |
Copyright terms: Public domain | W3C validator |