MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmpt11f Structured version   Unicode version

Theorem cnmpt11f 19212
Description: The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
cnmptid.j  |-  ( ph  ->  J  e.  (TopOn `  X ) )
cnmpt11.a  |-  ( ph  ->  ( x  e.  X  |->  A )  e.  ( J  Cn  K ) )
cnmpt11f.f  |-  ( ph  ->  F  e.  ( K  Cn  L ) )
Assertion
Ref Expression
cnmpt11f  |-  ( ph  ->  ( x  e.  X  |->  ( F `  A
) )  e.  ( J  Cn  L ) )
Distinct variable groups:    x, F    ph, x    x, J    x, X    x, K    x, L
Allowed substitution hint:    A( x)

Proof of Theorem cnmpt11f
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 cnmptid.j . 2  |-  ( ph  ->  J  e.  (TopOn `  X ) )
2 cnmpt11.a . 2  |-  ( ph  ->  ( x  e.  X  |->  A )  e.  ( J  Cn  K ) )
3 cntop2 18820 . . . 4  |-  ( ( x  e.  X  |->  A )  e.  ( J  Cn  K )  ->  K  e.  Top )
42, 3syl 16 . . 3  |-  ( ph  ->  K  e.  Top )
5 eqid 2438 . . . 4  |-  U. K  =  U. K
65toptopon 18513 . . 3  |-  ( K  e.  Top  <->  K  e.  (TopOn `  U. K ) )
74, 6sylib 196 . 2  |-  ( ph  ->  K  e.  (TopOn `  U. K ) )
8 cnmpt11f.f . . . . 5  |-  ( ph  ->  F  e.  ( K  Cn  L ) )
9 eqid 2438 . . . . . 6  |-  U. L  =  U. L
105, 9cnf 18825 . . . . 5  |-  ( F  e.  ( K  Cn  L )  ->  F : U. K --> U. L
)
118, 10syl 16 . . . 4  |-  ( ph  ->  F : U. K --> U. L )
1211feqmptd 5739 . . 3  |-  ( ph  ->  F  =  ( y  e.  U. K  |->  ( F `  y ) ) )
1312, 8eqeltrrd 2513 . 2  |-  ( ph  ->  ( y  e.  U. K  |->  ( F `  y ) )  e.  ( K  Cn  L
) )
14 fveq2 5686 . 2  |-  ( y  =  A  ->  ( F `  y )  =  ( F `  A ) )
151, 2, 7, 13, 14cnmpt11 19211 1  |-  ( ph  ->  ( x  e.  X  |->  ( F `  A
) )  e.  ( J  Cn  L ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    e. wcel 1756   U.cuni 4086    e. cmpt 4345   -->wf 5409   ` cfv 5413  (class class class)co 6086   Topctop 18473  TopOnctopon 18474    Cn ccn 18803
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2715  df-rex 2716  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-op 3879  df-uni 4087  df-br 4288  df-opab 4346  df-mpt 4347  df-id 4631  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-fv 5421  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-map 7208  df-top 18478  df-topon 18481  df-cn 18806
This theorem is referenced by:  cnmpt12f  19214  tgpmulg  19639  prdstgpd  19670  pcorevcl  20572  pcorevlem  20573  logcn  22067  loglesqr  22171  efrlim  22338  cvmliftlem8  27133  areacirclem2  28438  areacirclem4  28440
  Copyright terms: Public domain W3C validator