Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  areacirclem4 Structured version   Visualization version   GIF version

Theorem areacirclem4 32673
Description: Endpoint-inclusive continuity of antiderivative of cross-section of circle. (Contributed by Brendan Leahy, 31-Aug-2017.) (Revised by Brendan Leahy, 11-Jul-2018.)
Assertion
Ref Expression
areacirclem4 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑡 / 𝑅)) + ((𝑡 / 𝑅) · (√‘(1 − ((𝑡 / 𝑅)↑2))))))) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
Distinct variable group:   𝑡,𝑅

Proof of Theorem areacirclem4
StepHypRef Expression
1 rpcn 11717 . . . 4 (𝑅 ∈ ℝ+𝑅 ∈ ℂ)
21sqcld 12868 . . 3 (𝑅 ∈ ℝ+ → (𝑅↑2) ∈ ℂ)
3 rpre 11715 . . . . . 6 (𝑅 ∈ ℝ+𝑅 ∈ ℝ)
43renegcld 10336 . . . . 5 (𝑅 ∈ ℝ+ → -𝑅 ∈ ℝ)
5 iccssre 12126 . . . . 5 ((-𝑅 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (-𝑅[,]𝑅) ⊆ ℝ)
64, 3, 5syl2anc 691 . . . 4 (𝑅 ∈ ℝ+ → (-𝑅[,]𝑅) ⊆ ℝ)
7 ax-resscn 9872 . . . 4 ℝ ⊆ ℂ
86, 7syl6ss 3580 . . 3 (𝑅 ∈ ℝ+ → (-𝑅[,]𝑅) ⊆ ℂ)
9 ssid 3587 . . . 4 ℂ ⊆ ℂ
109a1i 11 . . 3 (𝑅 ∈ ℝ+ → ℂ ⊆ ℂ)
11 cncfmptc 22522 . . 3 (((𝑅↑2) ∈ ℂ ∧ (-𝑅[,]𝑅) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑡 ∈ (-𝑅[,]𝑅) ↦ (𝑅↑2)) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
122, 8, 10, 11syl3anc 1318 . 2 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ (𝑅↑2)) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
13 eqid 2610 . . 3 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
1413addcn 22476 . . . 4 + ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
1514a1i 11 . . 3 (𝑅 ∈ ℝ+ → + ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
168sselda 3568 . . . . . . . 8 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → 𝑡 ∈ ℂ)
171adantr 480 . . . . . . . 8 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → 𝑅 ∈ ℂ)
18 rpne0 11724 . . . . . . . . 9 (𝑅 ∈ ℝ+𝑅 ≠ 0)
1918adantr 480 . . . . . . . 8 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → 𝑅 ≠ 0)
2016, 17, 19divcld 10680 . . . . . . 7 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (𝑡 / 𝑅) ∈ ℂ)
21 asinval 24409 . . . . . . 7 ((𝑡 / 𝑅) ∈ ℂ → (arcsin‘(𝑡 / 𝑅)) = (-i · (log‘((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))))))
2220, 21syl 17 . . . . . 6 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (arcsin‘(𝑡 / 𝑅)) = (-i · (log‘((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))))))
23 ax-icn 9874 . . . . . . . . . . . 12 i ∈ ℂ
2423a1i 11 . . . . . . . . . . 11 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → i ∈ ℂ)
2524, 20mulcld 9939 . . . . . . . . . 10 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (i · (𝑡 / 𝑅)) ∈ ℂ)
26 1cnd 9935 . . . . . . . . . . . 12 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → 1 ∈ ℂ)
2720sqcld 12868 . . . . . . . . . . . 12 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → ((𝑡 / 𝑅)↑2) ∈ ℂ)
2826, 27subcld 10271 . . . . . . . . . . 11 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (1 − ((𝑡 / 𝑅)↑2)) ∈ ℂ)
2928sqrtcld 14024 . . . . . . . . . 10 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (√‘(1 − ((𝑡 / 𝑅)↑2))) ∈ ℂ)
3025, 29addcld 9938 . . . . . . . . 9 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℂ)
31 0lt1 10429 . . . . . . . . . . . . . . 15 0 < 1
32 simp3 1056 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 = 0) → 𝑡 = 0)
3332oveq1d 6564 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 = 0) → (𝑡 / 𝑅) = (0 / 𝑅))
341, 18div0d 10679 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑅 ∈ ℝ+ → (0 / 𝑅) = 0)
35343ad2ant1 1075 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 = 0) → (0 / 𝑅) = 0)
3633, 35eqtrd 2644 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 = 0) → (𝑡 / 𝑅) = 0)
3736oveq2d 6565 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 = 0) → (i · (𝑡 / 𝑅)) = (i · 0))
38 it0e0 11131 . . . . . . . . . . . . . . . . . . . 20 (i · 0) = 0
3937, 38syl6eq 2660 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 = 0) → (i · (𝑡 / 𝑅)) = 0)
4036oveq1d 6564 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 = 0) → ((𝑡 / 𝑅)↑2) = (0↑2))
4140oveq2d 6565 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 = 0) → (1 − ((𝑡 / 𝑅)↑2)) = (1 − (0↑2)))
4241fveq2d 6107 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 = 0) → (√‘(1 − ((𝑡 / 𝑅)↑2))) = (√‘(1 − (0↑2))))
43 sq0 12817 . . . . . . . . . . . . . . . . . . . . . . . 24 (0↑2) = 0
4443oveq2i 6560 . . . . . . . . . . . . . . . . . . . . . . 23 (1 − (0↑2)) = (1 − 0)
45 1m0e1 11008 . . . . . . . . . . . . . . . . . . . . . . 23 (1 − 0) = 1
4644, 45eqtri 2632 . . . . . . . . . . . . . . . . . . . . . 22 (1 − (0↑2)) = 1
4746fveq2i 6106 . . . . . . . . . . . . . . . . . . . . 21 (√‘(1 − (0↑2))) = (√‘1)
48 sqrt1 13860 . . . . . . . . . . . . . . . . . . . . 21 (√‘1) = 1
4947, 48eqtri 2632 . . . . . . . . . . . . . . . . . . . 20 (√‘(1 − (0↑2))) = 1
5042, 49syl6eq 2660 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 = 0) → (√‘(1 − ((𝑡 / 𝑅)↑2))) = 1)
5139, 50oveq12d 6567 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 = 0) → ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) = (0 + 1))
52 0p1e1 11009 . . . . . . . . . . . . . . . . . 18 (0 + 1) = 1
5351, 52syl6eq 2660 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 = 0) → ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) = 1)
5453breq2d 4595 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 = 0) → (0 < ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ↔ 0 < 1))
55 0red 9920 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 = 0) → 0 ∈ ℝ)
56 1red 9934 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 = 0) → 1 ∈ ℝ)
5753, 56eqeltrd 2688 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 = 0) → ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℝ)
5855, 57ltnled 10063 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 = 0) → (0 < ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ↔ ¬ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ≤ 0))
5954, 58bitr3d 269 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 = 0) → (0 < 1 ↔ ¬ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ≤ 0))
6031, 59mpbii 222 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 = 0) → ¬ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ≤ 0)
61603expa 1257 . . . . . . . . . . . . 13 (((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) ∧ 𝑡 = 0) → ¬ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ≤ 0)
6261olcd 407 . . . . . . . . . . . 12 (((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) ∧ 𝑡 = 0) → (¬ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℝ ∨ ¬ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ≤ 0))
63 inelr 10887 . . . . . . . . . . . . . 14 ¬ i ∈ ℝ
6425, 29pncand 10272 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) − (√‘(1 − ((𝑡 / 𝑅)↑2)))) = (i · (𝑡 / 𝑅)))
65643adant3 1074 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) → (((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) − (√‘(1 − ((𝑡 / 𝑅)↑2)))) = (i · (𝑡 / 𝑅)))
6665oveq1d 6564 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) → ((((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) − (√‘(1 − ((𝑡 / 𝑅)↑2)))) · (𝑅 / 𝑡)) = ((i · (𝑡 / 𝑅)) · (𝑅 / 𝑡)))
6723a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) → i ∈ ℂ)
68203adant3 1074 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) → (𝑡 / 𝑅) ∈ ℂ)
6913ad2ant1 1075 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) → 𝑅 ∈ ℂ)
70163adant3 1074 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) → 𝑡 ∈ ℂ)
71 simp3 1056 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) → 𝑡 ≠ 0)
7269, 70, 71divcld 10680 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) → (𝑅 / 𝑡) ∈ ℂ)
7367, 68, 72mulassd 9942 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) → ((i · (𝑡 / 𝑅)) · (𝑅 / 𝑡)) = (i · ((𝑡 / 𝑅) · (𝑅 / 𝑡))))
7466, 73eqtrd 2644 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) → ((((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) − (√‘(1 − ((𝑡 / 𝑅)↑2)))) · (𝑅 / 𝑡)) = (i · ((𝑡 / 𝑅) · (𝑅 / 𝑡))))
75183ad2ant1 1075 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) → 𝑅 ≠ 0)
7670, 69, 71, 75divcan6d 10699 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) → ((𝑡 / 𝑅) · (𝑅 / 𝑡)) = 1)
7776oveq2d 6565 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) → (i · ((𝑡 / 𝑅) · (𝑅 / 𝑡))) = (i · 1))
7867mulid1d 9936 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) → (i · 1) = i)
7974, 77, 783eqtrrd 2649 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) → i = ((((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) − (√‘(1 − ((𝑡 / 𝑅)↑2)))) · (𝑅 / 𝑡)))
8079adantr 480 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) ∧ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℝ) → i = ((((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) − (√‘(1 − ((𝑡 / 𝑅)↑2)))) · (𝑅 / 𝑡)))
81 simpr 476 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) ∧ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℝ) → ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℝ)
82 1red 9934 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → 1 ∈ ℝ)
836sselda 3568 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → 𝑡 ∈ ℝ)
843adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → 𝑅 ∈ ℝ)
8583, 84, 19redivcld 10732 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (𝑡 / 𝑅) ∈ ℝ)
8685resqcld 12897 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → ((𝑡 / 𝑅)↑2) ∈ ℝ)
8782, 86resubcld 10337 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (1 − ((𝑡 / 𝑅)↑2)) ∈ ℝ)
88 elicc2 12109 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((-𝑅 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (𝑡 ∈ (-𝑅[,]𝑅) ↔ (𝑡 ∈ ℝ ∧ -𝑅𝑡𝑡𝑅)))
894, 3, 88syl2anc 691 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↔ (𝑡 ∈ ℝ ∧ -𝑅𝑡𝑡𝑅)))
90 1red 9934 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → 1 ∈ ℝ)
91 simpr 476 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → 𝑡 ∈ ℝ)
923adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → 𝑅 ∈ ℝ)
9318adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → 𝑅 ≠ 0)
9491, 92, 93redivcld 10732 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → (𝑡 / 𝑅) ∈ ℝ)
9594resqcld 12897 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → ((𝑡 / 𝑅)↑2) ∈ ℝ)
9690, 95subge0d 10496 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → (0 ≤ (1 − ((𝑡 / 𝑅)↑2)) ↔ ((𝑡 / 𝑅)↑2) ≤ 1))
97 recn 9905 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑡 ∈ ℝ → 𝑡 ∈ ℂ)
9897adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → 𝑡 ∈ ℂ)
991adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → 𝑅 ∈ ℂ)
10098, 99, 93sqdivd 12883 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → ((𝑡 / 𝑅)↑2) = ((𝑡↑2) / (𝑅↑2)))
101100breq1d 4593 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → (((𝑡 / 𝑅)↑2) ≤ 1 ↔ ((𝑡↑2) / (𝑅↑2)) ≤ 1))
102 resqcl 12793 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑡 ∈ ℝ → (𝑡↑2) ∈ ℝ)
103102adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → (𝑡↑2) ∈ ℝ)
1043resqcld 12897 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑅 ∈ ℝ+ → (𝑅↑2) ∈ ℝ)
105 rpgt0 11720 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑅 ∈ ℝ+ → 0 < 𝑅)
106 0red 9920 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑅 ∈ ℝ+ → 0 ∈ ℝ)
107 0le0 10987 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 0 ≤ 0
108107a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑅 ∈ ℝ+ → 0 ≤ 0)
109 rpge0 11721 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑅 ∈ ℝ+ → 0 ≤ 𝑅)
110106, 3, 108, 109lt2sqd 12905 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑅 ∈ ℝ+ → (0 < 𝑅 ↔ (0↑2) < (𝑅↑2)))
11143a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑅 ∈ ℝ+ → (0↑2) = 0)
112111breq1d 4593 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑅 ∈ ℝ+ → ((0↑2) < (𝑅↑2) ↔ 0 < (𝑅↑2)))
113110, 112bitrd 267 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑅 ∈ ℝ+ → (0 < 𝑅 ↔ 0 < (𝑅↑2)))
114105, 113mpbid 221 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑅 ∈ ℝ+ → 0 < (𝑅↑2))
115104, 114elrpd 11745 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑅 ∈ ℝ+ → (𝑅↑2) ∈ ℝ+)
116115adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → (𝑅↑2) ∈ ℝ+)
117103, 90, 116ledivmuld 11801 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → (((𝑡↑2) / (𝑅↑2)) ≤ 1 ↔ (𝑡↑2) ≤ ((𝑅↑2) · 1)))
118 absresq 13890 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑡 ∈ ℝ → ((abs‘𝑡)↑2) = (𝑡↑2))
119118eqcomd 2616 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑡 ∈ ℝ → (𝑡↑2) = ((abs‘𝑡)↑2))
1202mulid1d 9936 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑅 ∈ ℝ+ → ((𝑅↑2) · 1) = (𝑅↑2))
121119, 120breqan12rd 4600 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → ((𝑡↑2) ≤ ((𝑅↑2) · 1) ↔ ((abs‘𝑡)↑2) ≤ (𝑅↑2)))
12297abscld 14023 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑡 ∈ ℝ → (abs‘𝑡) ∈ ℝ)
123122adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → (abs‘𝑡) ∈ ℝ)
12497absge0d 14031 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑡 ∈ ℝ → 0 ≤ (abs‘𝑡))
125124adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → 0 ≤ (abs‘𝑡))
126109adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → 0 ≤ 𝑅)
127123, 92, 125, 126le2sqd 12906 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → ((abs‘𝑡) ≤ 𝑅 ↔ ((abs‘𝑡)↑2) ≤ (𝑅↑2)))
12891, 92absled 14017 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → ((abs‘𝑡) ≤ 𝑅 ↔ (-𝑅𝑡𝑡𝑅)))
129121, 127, 1283bitr2d 295 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → ((𝑡↑2) ≤ ((𝑅↑2) · 1) ↔ (-𝑅𝑡𝑡𝑅)))
130117, 129bitrd 267 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → (((𝑡↑2) / (𝑅↑2)) ≤ 1 ↔ (-𝑅𝑡𝑡𝑅)))
13196, 101, 1303bitrrd 294 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → ((-𝑅𝑡𝑡𝑅) ↔ 0 ≤ (1 − ((𝑡 / 𝑅)↑2))))
132131biimpd 218 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑅 ∈ ℝ+𝑡 ∈ ℝ) → ((-𝑅𝑡𝑡𝑅) → 0 ≤ (1 − ((𝑡 / 𝑅)↑2))))
133132exp4b 630 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑅 ∈ ℝ+ → (𝑡 ∈ ℝ → (-𝑅𝑡 → (𝑡𝑅 → 0 ≤ (1 − ((𝑡 / 𝑅)↑2))))))
1341333impd 1273 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑅 ∈ ℝ+ → ((𝑡 ∈ ℝ ∧ -𝑅𝑡𝑡𝑅) → 0 ≤ (1 − ((𝑡 / 𝑅)↑2))))
13589, 134sylbid 229 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) → 0 ≤ (1 − ((𝑡 / 𝑅)↑2))))
136135imp 444 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → 0 ≤ (1 − ((𝑡 / 𝑅)↑2)))
13787, 136resqrtcld 14004 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (√‘(1 − ((𝑡 / 𝑅)↑2))) ∈ ℝ)
1381373adant3 1074 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) → (√‘(1 − ((𝑡 / 𝑅)↑2))) ∈ ℝ)
139138adantr 480 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) ∧ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℝ) → (√‘(1 − ((𝑡 / 𝑅)↑2))) ∈ ℝ)
14081, 139resubcld 10337 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) ∧ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℝ) → (((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) − (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℝ)
14133ad2ant1 1075 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) → 𝑅 ∈ ℝ)
142833adant3 1074 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) → 𝑡 ∈ ℝ)
143141, 142, 71redivcld 10732 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) → (𝑅 / 𝑡) ∈ ℝ)
144143adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) ∧ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℝ) → (𝑅 / 𝑡) ∈ ℝ)
145140, 144remulcld 9949 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) ∧ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℝ) → ((((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) − (√‘(1 − ((𝑡 / 𝑅)↑2)))) · (𝑅 / 𝑡)) ∈ ℝ)
14680, 145eqeltrd 2688 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) ∧ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℝ) → i ∈ ℝ)
147146ex 449 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅) ∧ 𝑡 ≠ 0) → (((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℝ → i ∈ ℝ))
1481473expa 1257 . . . . . . . . . . . . . 14 (((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) ∧ 𝑡 ≠ 0) → (((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℝ → i ∈ ℝ))
14963, 148mtoi 189 . . . . . . . . . . . . 13 (((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) ∧ 𝑡 ≠ 0) → ¬ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℝ)
150149orcd 406 . . . . . . . . . . . 12 (((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) ∧ 𝑡 ≠ 0) → (¬ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℝ ∨ ¬ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ≤ 0))
15162, 150pm2.61dane 2869 . . . . . . . . . . 11 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (¬ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℝ ∨ ¬ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ≤ 0))
152 ianor 508 . . . . . . . . . . 11 (¬ (((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℝ ∧ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ≤ 0) ↔ (¬ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℝ ∨ ¬ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ≤ 0))
153151, 152sylibr 223 . . . . . . . . . 10 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → ¬ (((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℝ ∧ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ≤ 0))
154 mnfxr 9975 . . . . . . . . . . . 12 -∞ ∈ ℝ*
155 0re 9919 . . . . . . . . . . . 12 0 ∈ ℝ
156 elioc2 12107 . . . . . . . . . . . 12 ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ) → (((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ (-∞(,]0) ↔ (((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℝ ∧ -∞ < ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∧ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ≤ 0)))
157154, 155, 156mp2an 704 . . . . . . . . . . 11 (((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ (-∞(,]0) ↔ (((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℝ ∧ -∞ < ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∧ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ≤ 0))
158 3simpb 1052 . . . . . . . . . . 11 ((((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℝ ∧ -∞ < ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∧ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ≤ 0) → (((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℝ ∧ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ≤ 0))
159157, 158sylbi 206 . . . . . . . . . 10 (((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ (-∞(,]0) → (((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℝ ∧ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ≤ 0))
160153, 159nsyl 134 . . . . . . . . 9 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → ¬ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ (-∞(,]0))
16130, 160eldifd 3551 . . . . . . . 8 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ (ℂ ∖ (-∞(,]0)))
162 fvres 6117 . . . . . . . 8 (((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ (ℂ ∖ (-∞(,]0)) → ((log ↾ (ℂ ∖ (-∞(,]0)))‘((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2))))) = (log‘((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2))))))
163161, 162syl 17 . . . . . . 7 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → ((log ↾ (ℂ ∖ (-∞(,]0)))‘((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2))))) = (log‘((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2))))))
164163oveq2d 6565 . . . . . 6 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (-i · ((log ↾ (ℂ ∖ (-∞(,]0)))‘((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))))) = (-i · (log‘((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))))))
16522, 164eqtr4d 2647 . . . . 5 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (arcsin‘(𝑡 / 𝑅)) = (-i · ((log ↾ (ℂ ∖ (-∞(,]0)))‘((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))))))
166165mpteq2dva 4672 . . . 4 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ (arcsin‘(𝑡 / 𝑅))) = (𝑡 ∈ (-𝑅[,]𝑅) ↦ (-i · ((log ↾ (ℂ ∖ (-∞(,]0)))‘((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2))))))))
167 negicn 10161 . . . . . . 7 -i ∈ ℂ
168167a1i 11 . . . . . 6 (𝑅 ∈ ℝ+ → -i ∈ ℂ)
169 cncfmptc 22522 . . . . . 6 ((-i ∈ ℂ ∧ (-𝑅[,]𝑅) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑡 ∈ (-𝑅[,]𝑅) ↦ -i) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
170168, 8, 10, 169syl3anc 1318 . . . . 5 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ -i) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
17113cnfldtopon 22396 . . . . . . . . 9 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
172171a1i 11 . . . . . . . 8 (𝑅 ∈ ℝ+ → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
173 resttopon 20775 . . . . . . . 8 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ (-𝑅[,]𝑅) ⊆ ℂ) → ((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) ∈ (TopOn‘(-𝑅[,]𝑅)))
174172, 8, 173syl2anc 691 . . . . . . 7 (𝑅 ∈ ℝ+ → ((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) ∈ (TopOn‘(-𝑅[,]𝑅)))
175 eqid 2610 . . . . . . . . . 10 (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2))))) = (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))))
176161, 175fmptd 6292 . . . . . . . . 9 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2))))):(-𝑅[,]𝑅)⟶(ℂ ∖ (-∞(,]0)))
177 difssd 3700 . . . . . . . . . 10 (𝑅 ∈ ℝ+ → (ℂ ∖ (-∞(,]0)) ⊆ ℂ)
17816, 17, 19divrec2d 10684 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (𝑡 / 𝑅) = ((1 / 𝑅) · 𝑡))
179178oveq2d 6565 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (i · (𝑡 / 𝑅)) = (i · ((1 / 𝑅) · 𝑡)))
1801, 18reccld 10673 . . . . . . . . . . . . . . . 16 (𝑅 ∈ ℝ+ → (1 / 𝑅) ∈ ℂ)
181180adantr 480 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (1 / 𝑅) ∈ ℂ)
18224, 181, 16mulassd 9942 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → ((i · (1 / 𝑅)) · 𝑡) = (i · ((1 / 𝑅) · 𝑡)))
183179, 182eqtr4d 2647 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (i · (𝑡 / 𝑅)) = ((i · (1 / 𝑅)) · 𝑡))
184183mpteq2dva 4672 . . . . . . . . . . . 12 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ (i · (𝑡 / 𝑅))) = (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((i · (1 / 𝑅)) · 𝑡)))
18523a1i 11 . . . . . . . . . . . . . . 15 (𝑅 ∈ ℝ+ → i ∈ ℂ)
186185, 180mulcld 9939 . . . . . . . . . . . . . 14 (𝑅 ∈ ℝ+ → (i · (1 / 𝑅)) ∈ ℂ)
187 cncfmptc 22522 . . . . . . . . . . . . . 14 (((i · (1 / 𝑅)) ∈ ℂ ∧ (-𝑅[,]𝑅) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑡 ∈ (-𝑅[,]𝑅) ↦ (i · (1 / 𝑅))) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
188186, 8, 10, 187syl3anc 1318 . . . . . . . . . . . . 13 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ (i · (1 / 𝑅))) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
189 cncfmptid 22523 . . . . . . . . . . . . . 14 (((-𝑅[,]𝑅) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑡 ∈ (-𝑅[,]𝑅) ↦ 𝑡) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
1908, 10, 189syl2anc 691 . . . . . . . . . . . . 13 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ 𝑡) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
191188, 190mulcncf 23023 . . . . . . . . . . . 12 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((i · (1 / 𝑅)) · 𝑡)) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
192184, 191eqeltrd 2688 . . . . . . . . . . 11 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ (i · (𝑡 / 𝑅))) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
19317, 29mulcld 9939 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (𝑅 · (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ℂ)
194193, 17, 19divrec2d 10684 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → ((𝑅 · (√‘(1 − ((𝑡 / 𝑅)↑2)))) / 𝑅) = ((1 / 𝑅) · (𝑅 · (√‘(1 − ((𝑡 / 𝑅)↑2))))))
19529, 17, 19divcan3d 10685 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → ((𝑅 · (√‘(1 − ((𝑡 / 𝑅)↑2)))) / 𝑅) = (√‘(1 − ((𝑡 / 𝑅)↑2))))
196104adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (𝑅↑2) ∈ ℝ)
1973sqge0d 12898 . . . . . . . . . . . . . . . . . 18 (𝑅 ∈ ℝ+ → 0 ≤ (𝑅↑2))
198197adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → 0 ≤ (𝑅↑2))
199196, 198, 87, 136sqrtmuld 14011 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (√‘((𝑅↑2) · (1 − ((𝑡 / 𝑅)↑2)))) = ((√‘(𝑅↑2)) · (√‘(1 − ((𝑡 / 𝑅)↑2)))))
2002adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (𝑅↑2) ∈ ℂ)
201200, 26, 27subdid 10365 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → ((𝑅↑2) · (1 − ((𝑡 / 𝑅)↑2))) = (((𝑅↑2) · 1) − ((𝑅↑2) · ((𝑡 / 𝑅)↑2))))
202200mulid1d 9936 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → ((𝑅↑2) · 1) = (𝑅↑2))
20316, 17, 19sqdivd 12883 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → ((𝑡 / 𝑅)↑2) = ((𝑡↑2) / (𝑅↑2)))
204203oveq2d 6565 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → ((𝑅↑2) · ((𝑡 / 𝑅)↑2)) = ((𝑅↑2) · ((𝑡↑2) / (𝑅↑2))))
20516sqcld 12868 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (𝑡↑2) ∈ ℂ)
206 sqne0 12792 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑅 ∈ ℂ → ((𝑅↑2) ≠ 0 ↔ 𝑅 ≠ 0))
2071, 206syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑅 ∈ ℝ+ → ((𝑅↑2) ≠ 0 ↔ 𝑅 ≠ 0))
20818, 207mpbird 246 . . . . . . . . . . . . . . . . . . . . . 22 (𝑅 ∈ ℝ+ → (𝑅↑2) ≠ 0)
209208adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (𝑅↑2) ≠ 0)
210205, 200, 209divcan2d 10682 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → ((𝑅↑2) · ((𝑡↑2) / (𝑅↑2))) = (𝑡↑2))
211204, 210eqtrd 2644 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → ((𝑅↑2) · ((𝑡 / 𝑅)↑2)) = (𝑡↑2))
212202, 211oveq12d 6567 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (((𝑅↑2) · 1) − ((𝑅↑2) · ((𝑡 / 𝑅)↑2))) = ((𝑅↑2) − (𝑡↑2)))
213201, 212eqtrd 2644 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → ((𝑅↑2) · (1 − ((𝑡 / 𝑅)↑2))) = ((𝑅↑2) − (𝑡↑2)))
214213fveq2d 6107 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (√‘((𝑅↑2) · (1 − ((𝑡 / 𝑅)↑2)))) = (√‘((𝑅↑2) − (𝑡↑2))))
215109adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → 0 ≤ 𝑅)
21684, 215sqrtsqd 14006 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (√‘(𝑅↑2)) = 𝑅)
217216oveq1d 6564 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → ((√‘(𝑅↑2)) · (√‘(1 − ((𝑡 / 𝑅)↑2)))) = (𝑅 · (√‘(1 − ((𝑡 / 𝑅)↑2)))))
218199, 214, 2173eqtr3rd 2653 . . . . . . . . . . . . . . 15 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (𝑅 · (√‘(1 − ((𝑡 / 𝑅)↑2)))) = (√‘((𝑅↑2) − (𝑡↑2))))
219218oveq2d 6565 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → ((1 / 𝑅) · (𝑅 · (√‘(1 − ((𝑡 / 𝑅)↑2))))) = ((1 / 𝑅) · (√‘((𝑅↑2) − (𝑡↑2)))))
220194, 195, 2193eqtr3d 2652 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (√‘(1 − ((𝑡 / 𝑅)↑2))) = ((1 / 𝑅) · (√‘((𝑅↑2) − (𝑡↑2)))))
221220mpteq2dva 4672 . . . . . . . . . . . 12 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ (√‘(1 − ((𝑡 / 𝑅)↑2)))) = (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((1 / 𝑅) · (√‘((𝑅↑2) − (𝑡↑2))))))
222 cncfmptc 22522 . . . . . . . . . . . . . 14 (((1 / 𝑅) ∈ ℂ ∧ (-𝑅[,]𝑅) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑡 ∈ (-𝑅[,]𝑅) ↦ (1 / 𝑅)) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
223180, 8, 10, 222syl3anc 1318 . . . . . . . . . . . . 13 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ (1 / 𝑅)) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
224 areacirclem2 32671 . . . . . . . . . . . . . 14 ((𝑅 ∈ ℝ ∧ 0 ≤ 𝑅) → (𝑡 ∈ (-𝑅[,]𝑅) ↦ (√‘((𝑅↑2) − (𝑡↑2)))) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
2253, 109, 224syl2anc 691 . . . . . . . . . . . . 13 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ (√‘((𝑅↑2) − (𝑡↑2)))) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
226223, 225mulcncf 23023 . . . . . . . . . . . 12 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((1 / 𝑅) · (√‘((𝑅↑2) − (𝑡↑2))))) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
227221, 226eqeltrd 2688 . . . . . . . . . . 11 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ (√‘(1 − ((𝑡 / 𝑅)↑2)))) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
22813, 15, 192, 227cncfmpt2f 22525 . . . . . . . . . 10 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2))))) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
229 cncffvrn 22509 . . . . . . . . . 10 (((ℂ ∖ (-∞(,]0)) ⊆ ℂ ∧ (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2))))) ∈ ((-𝑅[,]𝑅)–cn→ℂ)) → ((𝑡 ∈ (-𝑅[,]𝑅) ↦ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2))))) ∈ ((-𝑅[,]𝑅)–cn→(ℂ ∖ (-∞(,]0))) ↔ (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2))))):(-𝑅[,]𝑅)⟶(ℂ ∖ (-∞(,]0))))
230177, 228, 229syl2anc 691 . . . . . . . . 9 (𝑅 ∈ ℝ+ → ((𝑡 ∈ (-𝑅[,]𝑅) ↦ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2))))) ∈ ((-𝑅[,]𝑅)–cn→(ℂ ∖ (-∞(,]0))) ↔ (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2))))):(-𝑅[,]𝑅)⟶(ℂ ∖ (-∞(,]0))))
231176, 230mpbird 246 . . . . . . . 8 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2))))) ∈ ((-𝑅[,]𝑅)–cn→(ℂ ∖ (-∞(,]0))))
232 eqid 2610 . . . . . . . . . 10 ((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) = ((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅))
233 eqid 2610 . . . . . . . . . 10 ((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0))) = ((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0)))
23413, 232, 233cncfcn 22520 . . . . . . . . 9 (((-𝑅[,]𝑅) ⊆ ℂ ∧ (ℂ ∖ (-∞(,]0)) ⊆ ℂ) → ((-𝑅[,]𝑅)–cn→(ℂ ∖ (-∞(,]0))) = (((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) Cn ((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0)))))
2358, 177, 234syl2anc 691 . . . . . . . 8 (𝑅 ∈ ℝ+ → ((-𝑅[,]𝑅)–cn→(ℂ ∖ (-∞(,]0))) = (((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) Cn ((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0)))))
236231, 235eleqtrd 2690 . . . . . . 7 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2))))) ∈ (((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) Cn ((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0)))))
237 eqid 2610 . . . . . . . . . 10 (ℂ ∖ (-∞(,]0)) = (ℂ ∖ (-∞(,]0))
238237logcn 24193 . . . . . . . . 9 (log ↾ (ℂ ∖ (-∞(,]0))) ∈ ((ℂ ∖ (-∞(,]0))–cn→ℂ)
239 difss 3699 . . . . . . . . . 10 (ℂ ∖ (-∞(,]0)) ⊆ ℂ
240 eqid 2610 . . . . . . . . . . 11 ((TopOpen‘ℂfld) ↾t ℂ) = ((TopOpen‘ℂfld) ↾t ℂ)
24113, 233, 240cncfcn 22520 . . . . . . . . . 10 (((ℂ ∖ (-∞(,]0)) ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((ℂ ∖ (-∞(,]0))–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0))) Cn ((TopOpen‘ℂfld) ↾t ℂ)))
242239, 9, 241mp2an 704 . . . . . . . . 9 ((ℂ ∖ (-∞(,]0))–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0))) Cn ((TopOpen‘ℂfld) ↾t ℂ))
243238, 242eleqtri 2686 . . . . . . . 8 (log ↾ (ℂ ∖ (-∞(,]0))) ∈ (((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0))) Cn ((TopOpen‘ℂfld) ↾t ℂ))
244243a1i 11 . . . . . . 7 (𝑅 ∈ ℝ+ → (log ↾ (ℂ ∖ (-∞(,]0))) ∈ (((TopOpen‘ℂfld) ↾t (ℂ ∖ (-∞(,]0))) Cn ((TopOpen‘ℂfld) ↾t ℂ)))
245174, 236, 244cnmpt11f 21277 . . . . . 6 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((log ↾ (ℂ ∖ (-∞(,]0)))‘((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))))) ∈ (((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) Cn ((TopOpen‘ℂfld) ↾t ℂ)))
24613, 232, 240cncfcn 22520 . . . . . . 7 (((-𝑅[,]𝑅) ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((-𝑅[,]𝑅)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) Cn ((TopOpen‘ℂfld) ↾t ℂ)))
2478, 10, 246syl2anc 691 . . . . . 6 (𝑅 ∈ ℝ+ → ((-𝑅[,]𝑅)–cn→ℂ) = (((TopOpen‘ℂfld) ↾t (-𝑅[,]𝑅)) Cn ((TopOpen‘ℂfld) ↾t ℂ)))
248245, 247eleqtrrd 2691 . . . . 5 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((log ↾ (ℂ ∖ (-∞(,]0)))‘((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2)))))) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
249170, 248mulcncf 23023 . . . 4 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ (-i · ((log ↾ (ℂ ∖ (-∞(,]0)))‘((i · (𝑡 / 𝑅)) + (√‘(1 − ((𝑡 / 𝑅)↑2))))))) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
250166, 249eqeltrd 2688 . . 3 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ (arcsin‘(𝑡 / 𝑅))) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
251220oveq2d 6565 . . . . . 6 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → ((𝑡 / 𝑅) · (√‘(1 − ((𝑡 / 𝑅)↑2)))) = ((𝑡 / 𝑅) · ((1 / 𝑅) · (√‘((𝑅↑2) − (𝑡↑2))))))
252200, 205subcld 10271 . . . . . . . 8 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → ((𝑅↑2) − (𝑡↑2)) ∈ ℂ)
253252sqrtcld 14024 . . . . . . 7 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (√‘((𝑅↑2) − (𝑡↑2))) ∈ ℂ)
25420, 181, 253mulassd 9942 . . . . . 6 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (((𝑡 / 𝑅) · (1 / 𝑅)) · (√‘((𝑅↑2) − (𝑡↑2)))) = ((𝑡 / 𝑅) · ((1 / 𝑅) · (√‘((𝑅↑2) − (𝑡↑2))))))
25516, 17, 19divrecd 10683 . . . . . . . . 9 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (𝑡 / 𝑅) = (𝑡 · (1 / 𝑅)))
256255oveq1d 6564 . . . . . . . 8 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → ((𝑡 / 𝑅) · (1 / 𝑅)) = ((𝑡 · (1 / 𝑅)) · (1 / 𝑅)))
25716, 181, 181mulassd 9942 . . . . . . . 8 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → ((𝑡 · (1 / 𝑅)) · (1 / 𝑅)) = (𝑡 · ((1 / 𝑅) · (1 / 𝑅))))
258256, 257eqtrd 2644 . . . . . . 7 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → ((𝑡 / 𝑅) · (1 / 𝑅)) = (𝑡 · ((1 / 𝑅) · (1 / 𝑅))))
259258oveq1d 6564 . . . . . 6 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → (((𝑡 / 𝑅) · (1 / 𝑅)) · (√‘((𝑅↑2) − (𝑡↑2)))) = ((𝑡 · ((1 / 𝑅) · (1 / 𝑅))) · (√‘((𝑅↑2) − (𝑡↑2)))))
260251, 254, 2593eqtr2d 2650 . . . . 5 ((𝑅 ∈ ℝ+𝑡 ∈ (-𝑅[,]𝑅)) → ((𝑡 / 𝑅) · (√‘(1 − ((𝑡 / 𝑅)↑2)))) = ((𝑡 · ((1 / 𝑅) · (1 / 𝑅))) · (√‘((𝑅↑2) − (𝑡↑2)))))
261260mpteq2dva 4672 . . . 4 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((𝑡 / 𝑅) · (√‘(1 − ((𝑡 / 𝑅)↑2))))) = (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((𝑡 · ((1 / 𝑅) · (1 / 𝑅))) · (√‘((𝑅↑2) − (𝑡↑2))))))
262180, 180mulcld 9939 . . . . . . 7 (𝑅 ∈ ℝ+ → ((1 / 𝑅) · (1 / 𝑅)) ∈ ℂ)
263 cncfmptc 22522 . . . . . . 7 ((((1 / 𝑅) · (1 / 𝑅)) ∈ ℂ ∧ (-𝑅[,]𝑅) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((1 / 𝑅) · (1 / 𝑅))) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
264262, 8, 10, 263syl3anc 1318 . . . . . 6 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((1 / 𝑅) · (1 / 𝑅))) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
265190, 264mulcncf 23023 . . . . 5 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ (𝑡 · ((1 / 𝑅) · (1 / 𝑅)))) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
266265, 225mulcncf 23023 . . . 4 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((𝑡 · ((1 / 𝑅) · (1 / 𝑅))) · (√‘((𝑅↑2) − (𝑡↑2))))) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
267261, 266eqeltrd 2688 . . 3 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((𝑡 / 𝑅) · (√‘(1 − ((𝑡 / 𝑅)↑2))))) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
26813, 15, 250, 267cncfmpt2f 22525 . 2 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((arcsin‘(𝑡 / 𝑅)) + ((𝑡 / 𝑅) · (√‘(1 − ((𝑡 / 𝑅)↑2)))))) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
26912, 268mulcncf 23023 1 (𝑅 ∈ ℝ+ → (𝑡 ∈ (-𝑅[,]𝑅) ↦ ((𝑅↑2) · ((arcsin‘(𝑡 / 𝑅)) + ((𝑡 / 𝑅) · (√‘(1 − ((𝑡 / 𝑅)↑2))))))) ∈ ((-𝑅[,]𝑅)–cn→ℂ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  cdif 3537  wss 3540   class class class wbr 4583  cmpt 4643  cres 5040  wf 5800  cfv 5804  (class class class)co 6549  cc 9813  cr 9814  0cc0 9815  1c1 9816  ici 9817   + caddc 9818   · cmul 9820  -∞cmnf 9951  *cxr 9952   < clt 9953  cle 9954  cmin 10145  -cneg 10146   / cdiv 10563  2c2 10947  +crp 11708  (,]cioc 12047  [,]cicc 12049  cexp 12722  csqrt 13821  abscabs 13822  t crest 15904  TopOpenctopn 15905  fldccnfld 19567  TopOnctopon 20518   Cn ccn 20838   ×t ctx 21173  cnccncf 22487  logclog 24105  arcsincasin 24389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ioc 12051  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-shft 13655  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265  df-ef 14637  df-sin 14639  df-cos 14640  df-tan 14641  df-pi 14642  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-haus 20929  df-cmp 21000  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-limc 23436  df-dv 23437  df-log 24107  df-cxp 24108  df-asin 24392
This theorem is referenced by:  areacirc  32675
  Copyright terms: Public domain W3C validator