Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj570 Structured version   Visualization version   GIF version

Theorem bnj570 30229
Description: Technical lemma for bnj852 30245. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj570.3 𝐷 = (ω ∖ {∅})
bnj570.17 (𝜏 ↔ (𝑓 Fn 𝑚𝜑′𝜓′))
bnj570.19 (𝜂 ↔ (𝑚𝐷𝑛 = suc 𝑚𝑝 ∈ ω ∧ 𝑚 = suc 𝑝))
bnj570.21 (𝜌 ↔ (𝑖 ∈ ω ∧ suc 𝑖𝑛𝑚 ≠ suc 𝑖))
bnj570.24 𝐾 = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅)
bnj570.26 𝐺 = (𝑓 ∪ {⟨𝑚, 𝐶⟩})
bnj570.40 ((𝑅 FrSe 𝐴𝜏𝜂) → 𝐺 Fn 𝑛)
bnj570.30 (𝜓′ ↔ ∀𝑖 ∈ ω (suc 𝑖𝑚 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
Assertion
Ref Expression
bnj570 ((𝑅 FrSe 𝐴𝜏𝜂𝜌) → (𝐺‘suc 𝑖) = 𝐾)
Distinct variable groups:   𝑦,𝐺   𝑦,𝑓   𝑦,𝑖
Allowed substitution hints:   𝜏(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜂(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜌(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝐴(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝐶(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝐷(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝑅(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝐺(𝑓,𝑖,𝑚,𝑛,𝑝)   𝐾(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜑′(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜓′(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)

Proof of Theorem bnj570
StepHypRef Expression
1 bnj251 30021 . . . 4 ((𝑅 FrSe 𝐴𝜏𝜂𝜌) ↔ (𝑅 FrSe 𝐴 ∧ (𝜏 ∧ (𝜂𝜌))))
2 bnj570.17 . . . . . 6 (𝜏 ↔ (𝑓 Fn 𝑚𝜑′𝜓′))
32simp3bi 1071 . . . . 5 (𝜏𝜓′)
4 bnj570.21 . . . . . . . 8 (𝜌 ↔ (𝑖 ∈ ω ∧ suc 𝑖𝑛𝑚 ≠ suc 𝑖))
54simp1bi 1069 . . . . . . 7 (𝜌𝑖 ∈ ω)
65adantl 481 . . . . . 6 ((𝜂𝜌) → 𝑖 ∈ ω)
7 bnj570.19 . . . . . . 7 (𝜂 ↔ (𝑚𝐷𝑛 = suc 𝑚𝑝 ∈ ω ∧ 𝑚 = suc 𝑝))
87, 4bnj563 30067 . . . . . 6 ((𝜂𝜌) → suc 𝑖𝑚)
96, 8jca 553 . . . . 5 ((𝜂𝜌) → (𝑖 ∈ ω ∧ suc 𝑖𝑚))
10 bnj570.30 . . . . . . . 8 (𝜓′ ↔ ∀𝑖 ∈ ω (suc 𝑖𝑚 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
1110bnj946 30099 . . . . . . 7 (𝜓′ ↔ ∀𝑖(𝑖 ∈ ω → (suc 𝑖𝑚 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))))
12 sp 2041 . . . . . . 7 (∀𝑖(𝑖 ∈ ω → (suc 𝑖𝑚 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))) → (𝑖 ∈ ω → (suc 𝑖𝑚 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))))
1311, 12sylbi 206 . . . . . 6 (𝜓′ → (𝑖 ∈ ω → (suc 𝑖𝑚 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))))
1413imp32 448 . . . . 5 ((𝜓′ ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑚)) → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))
153, 9, 14syl2an 493 . . . 4 ((𝜏 ∧ (𝜂𝜌)) → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))
161, 15simplbiim 657 . . 3 ((𝑅 FrSe 𝐴𝜏𝜂𝜌) → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))
17 bnj570.40 . . . . . 6 ((𝑅 FrSe 𝐴𝜏𝜂) → 𝐺 Fn 𝑛)
1817bnj930 30094 . . . . 5 ((𝑅 FrSe 𝐴𝜏𝜂) → Fun 𝐺)
1918bnj721 30081 . . . 4 ((𝑅 FrSe 𝐴𝜏𝜂𝜌) → Fun 𝐺)
20 bnj570.26 . . . . . 6 𝐺 = (𝑓 ∪ {⟨𝑚, 𝐶⟩})
2120bnj931 30095 . . . . 5 𝑓𝐺
2221a1i 11 . . . 4 ((𝑅 FrSe 𝐴𝜏𝜂𝜌) → 𝑓𝐺)
23 bnj667 30076 . . . . 5 ((𝑅 FrSe 𝐴𝜏𝜂𝜌) → (𝜏𝜂𝜌))
242bnj564 30068 . . . . . . 7 (𝜏 → dom 𝑓 = 𝑚)
25 eleq2 2677 . . . . . . . 8 (dom 𝑓 = 𝑚 → (suc 𝑖 ∈ dom 𝑓 ↔ suc 𝑖𝑚))
2625biimpar 501 . . . . . . 7 ((dom 𝑓 = 𝑚 ∧ suc 𝑖𝑚) → suc 𝑖 ∈ dom 𝑓)
2724, 8, 26syl2an 493 . . . . . 6 ((𝜏 ∧ (𝜂𝜌)) → suc 𝑖 ∈ dom 𝑓)
28273impb 1252 . . . . 5 ((𝜏𝜂𝜌) → suc 𝑖 ∈ dom 𝑓)
2923, 28syl 17 . . . 4 ((𝑅 FrSe 𝐴𝜏𝜂𝜌) → suc 𝑖 ∈ dom 𝑓)
3019, 22, 29bnj1502 30172 . . 3 ((𝑅 FrSe 𝐴𝜏𝜂𝜌) → (𝐺‘suc 𝑖) = (𝑓‘suc 𝑖))
312simp1bi 1069 . . . . . . . . 9 (𝜏𝑓 Fn 𝑚)
32 bnj252 30022 . . . . . . . . . . . . . 14 ((𝑚𝐷𝑛 = suc 𝑚𝑝 ∈ ω ∧ 𝑚 = suc 𝑝) ↔ (𝑚𝐷 ∧ (𝑛 = suc 𝑚𝑝 ∈ ω ∧ 𝑚 = suc 𝑝)))
3332simplbi 475 . . . . . . . . . . . . 13 ((𝑚𝐷𝑛 = suc 𝑚𝑝 ∈ ω ∧ 𝑚 = suc 𝑝) → 𝑚𝐷)
347, 33sylbi 206 . . . . . . . . . . . 12 (𝜂𝑚𝐷)
35 eldifi 3694 . . . . . . . . . . . . 13 (𝑚 ∈ (ω ∖ {∅}) → 𝑚 ∈ ω)
36 bnj570.3 . . . . . . . . . . . . 13 𝐷 = (ω ∖ {∅})
3735, 36eleq2s 2706 . . . . . . . . . . . 12 (𝑚𝐷𝑚 ∈ ω)
38 nnord 6965 . . . . . . . . . . . 12 (𝑚 ∈ ω → Ord 𝑚)
3934, 37, 383syl 18 . . . . . . . . . . 11 (𝜂 → Ord 𝑚)
4039adantr 480 . . . . . . . . . 10 ((𝜂𝜌) → Ord 𝑚)
4140, 8jca 553 . . . . . . . . 9 ((𝜂𝜌) → (Ord 𝑚 ∧ suc 𝑖𝑚))
4231, 41anim12i 588 . . . . . . . 8 ((𝜏 ∧ (𝜂𝜌)) → (𝑓 Fn 𝑚 ∧ (Ord 𝑚 ∧ suc 𝑖𝑚)))
43 fndm 5904 . . . . . . . . 9 (𝑓 Fn 𝑚 → dom 𝑓 = 𝑚)
44 elelsuc 5714 . . . . . . . . . 10 (suc 𝑖𝑚 → suc 𝑖 ∈ suc 𝑚)
45 ordsucelsuc 6914 . . . . . . . . . . 11 (Ord 𝑚 → (𝑖𝑚 ↔ suc 𝑖 ∈ suc 𝑚))
4645biimpar 501 . . . . . . . . . 10 ((Ord 𝑚 ∧ suc 𝑖 ∈ suc 𝑚) → 𝑖𝑚)
4744, 46sylan2 490 . . . . . . . . 9 ((Ord 𝑚 ∧ suc 𝑖𝑚) → 𝑖𝑚)
4843, 47anim12i 588 . . . . . . . 8 ((𝑓 Fn 𝑚 ∧ (Ord 𝑚 ∧ suc 𝑖𝑚)) → (dom 𝑓 = 𝑚𝑖𝑚))
49 eleq2 2677 . . . . . . . . 9 (dom 𝑓 = 𝑚 → (𝑖 ∈ dom 𝑓𝑖𝑚))
5049biimpar 501 . . . . . . . 8 ((dom 𝑓 = 𝑚𝑖𝑚) → 𝑖 ∈ dom 𝑓)
5142, 48, 503syl 18 . . . . . . 7 ((𝜏 ∧ (𝜂𝜌)) → 𝑖 ∈ dom 𝑓)
52513impb 1252 . . . . . 6 ((𝜏𝜂𝜌) → 𝑖 ∈ dom 𝑓)
5323, 52syl 17 . . . . 5 ((𝑅 FrSe 𝐴𝜏𝜂𝜌) → 𝑖 ∈ dom 𝑓)
5419, 22, 53bnj1502 30172 . . . 4 ((𝑅 FrSe 𝐴𝜏𝜂𝜌) → (𝐺𝑖) = (𝑓𝑖))
5554iuneq1d 4481 . . 3 ((𝑅 FrSe 𝐴𝜏𝜂𝜌) → 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))
5616, 30, 553eqtr4d 2654 . 2 ((𝑅 FrSe 𝐴𝜏𝜂𝜌) → (𝐺‘suc 𝑖) = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅))
57 bnj570.24 . 2 𝐾 = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅)
5856, 57syl6eqr 2662 1 ((𝑅 FrSe 𝐴𝜏𝜂𝜌) → (𝐺‘suc 𝑖) = 𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031  wal 1473   = wceq 1475  wcel 1977  wne 2780  wral 2896  cdif 3537  cun 3538  wss 3540  c0 3874  {csn 4125  cop 4131   ciun 4455  dom cdm 5038  Ord word 5639  suc csuc 5642  Fun wfun 5798   Fn wfn 5799  cfv 5804  ωcom 6957  w-bnj17 30005   predc-bnj14 30007   FrSe w-bnj15 30011
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-res 5050  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-fv 5812  df-om 6958  df-bnj17 30006
This theorem is referenced by:  bnj571  30230
  Copyright terms: Public domain W3C validator