Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj570 Structured version   Unicode version

Theorem bnj570 31910
Description: Technical lemma for bnj852 31926. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj570.3  |-  D  =  ( om  \  { (/)
} )
bnj570.17  |-  ( ta  <->  ( f  Fn  m  /\  ph' 
/\  ps' ) )
bnj570.19  |-  ( et  <->  ( m  e.  D  /\  n  =  suc  m  /\  p  e.  om  /\  m  =  suc  p ) )
bnj570.21  |-  ( rh  <->  ( i  e.  om  /\  suc  i  e.  n  /\  m  =/=  suc  i
) )
bnj570.24  |-  K  = 
U_ y  e.  ( G `  i ) 
pred ( y ,  A ,  R )
bnj570.26  |-  G  =  ( f  u.  { <. m ,  C >. } )
bnj570.40  |-  ( ( R  FrSe  A  /\  ta  /\  et )  ->  G  Fn  n )
bnj570.30  |-  ( ps'  <->  A. i  e.  om  ( suc  i  e.  m  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
Assertion
Ref Expression
bnj570  |-  ( ( R  FrSe  A  /\  ta  /\  et  /\  rh )  ->  ( G `  suc  i )  =  K )
Distinct variable groups:    y, G    y, f    y, i
Allowed substitution hints:    ta( y, f, i, m, n, p)    et( y, f, i, m, n, p)    rh( y,
f, i, m, n, p)    A( y, f, i, m, n, p)    C( y, f, i, m, n, p)    D( y, f, i, m, n, p)    R( y, f, i, m, n, p)    G( f, i, m, n, p)    K( y,
f, i, m, n, p)    ph'( y, f, i, m, n, p)    ps'( y, f, i, m, n, p)

Proof of Theorem bnj570
StepHypRef Expression
1 bnj251 31702 . . . 4  |-  ( ( R  FrSe  A  /\  ta  /\  et  /\  rh ) 
<->  ( R  FrSe  A  /\  ( ta  /\  ( et  /\  rh ) ) ) )
2 bnj570.17 . . . . . 6  |-  ( ta  <->  ( f  Fn  m  /\  ph' 
/\  ps' ) )
32simp3bi 1005 . . . . 5  |-  ( ta 
->  ps' )
4 bnj570.21 . . . . . . . 8  |-  ( rh  <->  ( i  e.  om  /\  suc  i  e.  n  /\  m  =/=  suc  i
) )
54simp1bi 1003 . . . . . . 7  |-  ( rh 
->  i  e.  om )
65adantl 466 . . . . . 6  |-  ( ( et  /\  rh )  ->  i  e.  om )
7 bnj570.19 . . . . . . 7  |-  ( et  <->  ( m  e.  D  /\  n  =  suc  m  /\  p  e.  om  /\  m  =  suc  p ) )
87, 4bnj563 31747 . . . . . 6  |-  ( ( et  /\  rh )  ->  suc  i  e.  m )
96, 8jca 532 . . . . 5  |-  ( ( et  /\  rh )  ->  ( i  e. 
om  /\  suc  i  e.  m ) )
10 bnj570.30 . . . . . . . 8  |-  ( ps'  <->  A. i  e.  om  ( suc  i  e.  m  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
1110bnj946 31780 . . . . . . 7  |-  ( ps'  <->  A. i ( i  e. 
om  ->  ( suc  i  e.  m  ->  ( f `
 suc  i )  =  U_ y  e.  ( f `  i ) 
pred ( y ,  A ,  R ) ) ) )
12 sp 1794 . . . . . . 7  |-  ( A. i ( i  e. 
om  ->  ( suc  i  e.  m  ->  ( f `
 suc  i )  =  U_ y  e.  ( f `  i ) 
pred ( y ,  A ,  R ) ) )  ->  (
i  e.  om  ->  ( suc  i  e.  m  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) )
1311, 12sylbi 195 . . . . . 6  |-  ( ps'  ->  ( i  e.  om  ->  ( suc  i  e.  m  ->  ( f `  suc  i )  = 
U_ y  e.  ( f `  i ) 
pred ( y ,  A ,  R ) ) ) )
1413imp32 433 . . . . 5  |-  ( ( ps'  /\  ( i  e. 
om  /\  suc  i  e.  m ) )  -> 
( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) )
153, 9, 14syl2an 477 . . . 4  |-  ( ( ta  /\  ( et 
/\  rh ) )  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) )
161, 15bnj833 31763 . . 3  |-  ( ( R  FrSe  A  /\  ta  /\  et  /\  rh )  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) )
17 bnj570.40 . . . . . 6  |-  ( ( R  FrSe  A  /\  ta  /\  et )  ->  G  Fn  n )
1817bnj930 31775 . . . . 5  |-  ( ( R  FrSe  A  /\  ta  /\  et )  ->  Fun  G )
1918bnj721 31761 . . . 4  |-  ( ( R  FrSe  A  /\  ta  /\  et  /\  rh )  ->  Fun  G )
20 bnj570.26 . . . . . 6  |-  G  =  ( f  u.  { <. m ,  C >. } )
2120bnj931 31776 . . . . 5  |-  f  C_  G
2221a1i 11 . . . 4  |-  ( ( R  FrSe  A  /\  ta  /\  et  /\  rh )  ->  f  C_  G
)
23 bnj667 31756 . . . . 5  |-  ( ( R  FrSe  A  /\  ta  /\  et  /\  rh )  ->  ( ta  /\  et  /\  rh ) )
242bnj564 31748 . . . . . . 7  |-  ( ta 
->  dom  f  =  m )
25 eleq2 2504 . . . . . . . 8  |-  ( dom  f  =  m  -> 
( suc  i  e.  dom  f  <->  suc  i  e.  m
) )
2625biimpar 485 . . . . . . 7  |-  ( ( dom  f  =  m  /\  suc  i  e.  m )  ->  suc  i  e.  dom  f )
2724, 8, 26syl2an 477 . . . . . 6  |-  ( ( ta  /\  ( et 
/\  rh ) )  ->  suc  i  e.  dom  f )
28273impb 1183 . . . . 5  |-  ( ( ta  /\  et  /\  rh )  ->  suc  i  e.  dom  f )
2923, 28syl 16 . . . 4  |-  ( ( R  FrSe  A  /\  ta  /\  et  /\  rh )  ->  suc  i  e.  dom  f )
3019, 22, 29bnj1502 31853 . . 3  |-  ( ( R  FrSe  A  /\  ta  /\  et  /\  rh )  ->  ( G `  suc  i )  =  ( f `  suc  i
) )
312simp1bi 1003 . . . . . . . . 9  |-  ( ta 
->  f  Fn  m
)
32 bnj252 31703 . . . . . . . . . . . . . 14  |-  ( ( m  e.  D  /\  n  =  suc  m  /\  p  e.  om  /\  m  =  suc  p )  <->  ( m  e.  D  /\  (
n  =  suc  m  /\  p  e.  om  /\  m  =  suc  p
) ) )
3332simplbi 460 . . . . . . . . . . . . 13  |-  ( ( m  e.  D  /\  n  =  suc  m  /\  p  e.  om  /\  m  =  suc  p )  ->  m  e.  D )
347, 33sylbi 195 . . . . . . . . . . . 12  |-  ( et 
->  m  e.  D
)
35 eldifi 3490 . . . . . . . . . . . . 13  |-  ( m  e.  ( om  \  { (/)
} )  ->  m  e.  om )
36 bnj570.3 . . . . . . . . . . . . 13  |-  D  =  ( om  \  { (/)
} )
3735, 36eleq2s 2535 . . . . . . . . . . . 12  |-  ( m  e.  D  ->  m  e.  om )
38 nnord 6496 . . . . . . . . . . . 12  |-  ( m  e.  om  ->  Ord  m )
3934, 37, 383syl 20 . . . . . . . . . . 11  |-  ( et 
->  Ord  m )
4039adantr 465 . . . . . . . . . 10  |-  ( ( et  /\  rh )  ->  Ord  m )
4140, 8jca 532 . . . . . . . . 9  |-  ( ( et  /\  rh )  ->  ( Ord  m  /\  suc  i  e.  m
) )
4231, 41anim12i 566 . . . . . . . 8  |-  ( ( ta  /\  ( et 
/\  rh ) )  ->  ( f  Fn  m  /\  ( Ord  m  /\  suc  i  e.  m ) ) )
43 fndm 5522 . . . . . . . . 9  |-  ( f  Fn  m  ->  dom  f  =  m )
44 elelsuc 4803 . . . . . . . . . 10  |-  ( suc  i  e.  m  ->  suc  i  e.  suc  m )
45 ordsucelsuc 6445 . . . . . . . . . . 11  |-  ( Ord  m  ->  ( i  e.  m  <->  suc  i  e.  suc  m ) )
4645biimpar 485 . . . . . . . . . 10  |-  ( ( Ord  m  /\  suc  i  e.  suc  m )  ->  i  e.  m
)
4744, 46sylan2 474 . . . . . . . . 9  |-  ( ( Ord  m  /\  suc  i  e.  m )  ->  i  e.  m )
4843, 47anim12i 566 . . . . . . . 8  |-  ( ( f  Fn  m  /\  ( Ord  m  /\  suc  i  e.  m )
)  ->  ( dom  f  =  m  /\  i  e.  m )
)
49 eleq2 2504 . . . . . . . . 9  |-  ( dom  f  =  m  -> 
( i  e.  dom  f 
<->  i  e.  m ) )
5049biimpar 485 . . . . . . . 8  |-  ( ( dom  f  =  m  /\  i  e.  m
)  ->  i  e.  dom  f )
5142, 48, 503syl 20 . . . . . . 7  |-  ( ( ta  /\  ( et 
/\  rh ) )  ->  i  e.  dom  f )
52513impb 1183 . . . . . 6  |-  ( ( ta  /\  et  /\  rh )  ->  i  e. 
dom  f )
5323, 52syl 16 . . . . 5  |-  ( ( R  FrSe  A  /\  ta  /\  et  /\  rh )  ->  i  e.  dom  f )
5419, 22, 53bnj1502 31853 . . . 4  |-  ( ( R  FrSe  A  /\  ta  /\  et  /\  rh )  ->  ( G `  i )  =  ( f `  i ) )
5554iuneq1d 4207 . . 3  |-  ( ( R  FrSe  A  /\  ta  /\  et  /\  rh )  ->  U_ y  e.  ( G `  i ) 
pred ( y ,  A ,  R )  =  U_ y  e.  ( f `  i
)  pred ( y ,  A ,  R ) )
5616, 30, 553eqtr4d 2485 . 2  |-  ( ( R  FrSe  A  /\  ta  /\  et  /\  rh )  ->  ( G `  suc  i )  =  U_ y  e.  ( G `  i )  pred (
y ,  A ,  R ) )
57 bnj570.24 . 2  |-  K  = 
U_ y  e.  ( G `  i ) 
pred ( y ,  A ,  R )
5856, 57syl6eqr 2493 1  |-  ( ( R  FrSe  A  /\  ta  /\  et  /\  rh )  ->  ( G `  suc  i )  =  K )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965   A.wal 1367    = wceq 1369    e. wcel 1756    =/= wne 2618   A.wral 2727    \ cdif 3337    u. cun 3338    C_ wss 3340   (/)c0 3649   {csn 3889   <.cop 3895   U_ciun 4183   Ord word 4730   suc csuc 4733   dom cdm 4852   Fun wfun 5424    Fn wfn 5425   ` cfv 5430   omcom 6488    /\ w-bnj17 31686    predc-bnj14 31688    FrSe w-bnj15 31692
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4425  ax-nul 4433  ax-pr 4543  ax-un 6384
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2620  df-ral 2732  df-rex 2733  df-rab 2736  df-v 2986  df-sbc 3199  df-dif 3343  df-un 3345  df-in 3347  df-ss 3354  df-pss 3356  df-nul 3650  df-if 3804  df-sn 3890  df-pr 3892  df-tp 3894  df-op 3896  df-uni 4104  df-iun 4185  df-br 4305  df-opab 4363  df-tr 4398  df-eprel 4644  df-id 4648  df-po 4653  df-so 4654  df-fr 4691  df-we 4693  df-ord 4734  df-on 4735  df-lim 4736  df-suc 4737  df-xp 4858  df-rel 4859  df-cnv 4860  df-co 4861  df-dm 4862  df-res 4864  df-iota 5393  df-fun 5432  df-fn 5433  df-fv 5438  df-om 6489  df-bnj17 31687
This theorem is referenced by:  bnj571  31911
  Copyright terms: Public domain W3C validator