Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj570 Structured version   Unicode version

Theorem bnj570 29545
Description: Technical lemma for bnj852 29561. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj570.3  |-  D  =  ( om  \  { (/)
} )
bnj570.17  |-  ( ta  <->  ( f  Fn  m  /\  ph' 
/\  ps' ) )
bnj570.19  |-  ( et  <->  ( m  e.  D  /\  n  =  suc  m  /\  p  e.  om  /\  m  =  suc  p ) )
bnj570.21  |-  ( rh  <->  ( i  e.  om  /\  suc  i  e.  n  /\  m  =/=  suc  i
) )
bnj570.24  |-  K  = 
U_ y  e.  ( G `  i ) 
pred ( y ,  A ,  R )
bnj570.26  |-  G  =  ( f  u.  { <. m ,  C >. } )
bnj570.40  |-  ( ( R  FrSe  A  /\  ta  /\  et )  ->  G  Fn  n )
bnj570.30  |-  ( ps'  <->  A. i  e.  om  ( suc  i  e.  m  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
Assertion
Ref Expression
bnj570  |-  ( ( R  FrSe  A  /\  ta  /\  et  /\  rh )  ->  ( G `  suc  i )  =  K )
Distinct variable groups:    y, G    y, f    y, i
Allowed substitution hints:    ta( y, f, i, m, n, p)    et( y, f, i, m, n, p)    rh( y,
f, i, m, n, p)    A( y, f, i, m, n, p)    C( y, f, i, m, n, p)    D( y, f, i, m, n, p)    R( y, f, i, m, n, p)    G( f, i, m, n, p)    K( y,
f, i, m, n, p)    ph'( y, f, i, m, n, p)    ps'( y, f, i, m, n, p)

Proof of Theorem bnj570
StepHypRef Expression
1 bnj251 29336 . . . 4  |-  ( ( R  FrSe  A  /\  ta  /\  et  /\  rh ) 
<->  ( R  FrSe  A  /\  ( ta  /\  ( et  /\  rh ) ) ) )
2 bnj570.17 . . . . . 6  |-  ( ta  <->  ( f  Fn  m  /\  ph' 
/\  ps' ) )
32simp3bi 1022 . . . . 5  |-  ( ta 
->  ps' )
4 bnj570.21 . . . . . . . 8  |-  ( rh  <->  ( i  e.  om  /\  suc  i  e.  n  /\  m  =/=  suc  i
) )
54simp1bi 1020 . . . . . . 7  |-  ( rh 
->  i  e.  om )
65adantl 467 . . . . . 6  |-  ( ( et  /\  rh )  ->  i  e.  om )
7 bnj570.19 . . . . . . 7  |-  ( et  <->  ( m  e.  D  /\  n  =  suc  m  /\  p  e.  om  /\  m  =  suc  p ) )
87, 4bnj563 29382 . . . . . 6  |-  ( ( et  /\  rh )  ->  suc  i  e.  m )
96, 8jca 534 . . . . 5  |-  ( ( et  /\  rh )  ->  ( i  e. 
om  /\  suc  i  e.  m ) )
10 bnj570.30 . . . . . . . 8  |-  ( ps'  <->  A. i  e.  om  ( suc  i  e.  m  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) )
1110bnj946 29415 . . . . . . 7  |-  ( ps'  <->  A. i ( i  e. 
om  ->  ( suc  i  e.  m  ->  ( f `
 suc  i )  =  U_ y  e.  ( f `  i ) 
pred ( y ,  A ,  R ) ) ) )
12 sp 1909 . . . . . . 7  |-  ( A. i ( i  e. 
om  ->  ( suc  i  e.  m  ->  ( f `
 suc  i )  =  U_ y  e.  ( f `  i ) 
pred ( y ,  A ,  R ) ) )  ->  (
i  e.  om  ->  ( suc  i  e.  m  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) ) ) )
1311, 12sylbi 198 . . . . . 6  |-  ( ps'  ->  ( i  e.  om  ->  ( suc  i  e.  m  ->  ( f `  suc  i )  = 
U_ y  e.  ( f `  i ) 
pred ( y ,  A ,  R ) ) ) )
1413imp32 434 . . . . 5  |-  ( ( ps'  /\  ( i  e. 
om  /\  suc  i  e.  m ) )  -> 
( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) )
153, 9, 14syl2an 479 . . . 4  |-  ( ( ta  /\  ( et 
/\  rh ) )  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) )
161, 15bnj833 29398 . . 3  |-  ( ( R  FrSe  A  /\  ta  /\  et  /\  rh )  ->  ( f `  suc  i )  =  U_ y  e.  ( f `  i )  pred (
y ,  A ,  R ) )
17 bnj570.40 . . . . . 6  |-  ( ( R  FrSe  A  /\  ta  /\  et )  ->  G  Fn  n )
1817bnj930 29410 . . . . 5  |-  ( ( R  FrSe  A  /\  ta  /\  et )  ->  Fun  G )
1918bnj721 29396 . . . 4  |-  ( ( R  FrSe  A  /\  ta  /\  et  /\  rh )  ->  Fun  G )
20 bnj570.26 . . . . . 6  |-  G  =  ( f  u.  { <. m ,  C >. } )
2120bnj931 29411 . . . . 5  |-  f  C_  G
2221a1i 11 . . . 4  |-  ( ( R  FrSe  A  /\  ta  /\  et  /\  rh )  ->  f  C_  G
)
23 bnj667 29391 . . . . 5  |-  ( ( R  FrSe  A  /\  ta  /\  et  /\  rh )  ->  ( ta  /\  et  /\  rh ) )
242bnj564 29383 . . . . . . 7  |-  ( ta 
->  dom  f  =  m )
25 eleq2 2493 . . . . . . . 8  |-  ( dom  f  =  m  -> 
( suc  i  e.  dom  f  <->  suc  i  e.  m
) )
2625biimpar 487 . . . . . . 7  |-  ( ( dom  f  =  m  /\  suc  i  e.  m )  ->  suc  i  e.  dom  f )
2724, 8, 26syl2an 479 . . . . . 6  |-  ( ( ta  /\  ( et 
/\  rh ) )  ->  suc  i  e.  dom  f )
28273impb 1201 . . . . 5  |-  ( ( ta  /\  et  /\  rh )  ->  suc  i  e.  dom  f )
2923, 28syl 17 . . . 4  |-  ( ( R  FrSe  A  /\  ta  /\  et  /\  rh )  ->  suc  i  e.  dom  f )
3019, 22, 29bnj1502 29488 . . 3  |-  ( ( R  FrSe  A  /\  ta  /\  et  /\  rh )  ->  ( G `  suc  i )  =  ( f `  suc  i
) )
312simp1bi 1020 . . . . . . . . 9  |-  ( ta 
->  f  Fn  m
)
32 bnj252 29337 . . . . . . . . . . . . . 14  |-  ( ( m  e.  D  /\  n  =  suc  m  /\  p  e.  om  /\  m  =  suc  p )  <->  ( m  e.  D  /\  (
n  =  suc  m  /\  p  e.  om  /\  m  =  suc  p
) ) )
3332simplbi 461 . . . . . . . . . . . . 13  |-  ( ( m  e.  D  /\  n  =  suc  m  /\  p  e.  om  /\  m  =  suc  p )  ->  m  e.  D )
347, 33sylbi 198 . . . . . . . . . . . 12  |-  ( et 
->  m  e.  D
)
35 eldifi 3584 . . . . . . . . . . . . 13  |-  ( m  e.  ( om  \  { (/)
} )  ->  m  e.  om )
36 bnj570.3 . . . . . . . . . . . . 13  |-  D  =  ( om  \  { (/)
} )
3735, 36eleq2s 2528 . . . . . . . . . . . 12  |-  ( m  e.  D  ->  m  e.  om )
38 nnord 6705 . . . . . . . . . . . 12  |-  ( m  e.  om  ->  Ord  m )
3934, 37, 383syl 18 . . . . . . . . . . 11  |-  ( et 
->  Ord  m )
4039adantr 466 . . . . . . . . . 10  |-  ( ( et  /\  rh )  ->  Ord  m )
4140, 8jca 534 . . . . . . . . 9  |-  ( ( et  /\  rh )  ->  ( Ord  m  /\  suc  i  e.  m
) )
4231, 41anim12i 568 . . . . . . . 8  |-  ( ( ta  /\  ( et 
/\  rh ) )  ->  ( f  Fn  m  /\  ( Ord  m  /\  suc  i  e.  m ) ) )
43 fndm 5684 . . . . . . . . 9  |-  ( f  Fn  m  ->  dom  f  =  m )
44 elelsuc 5505 . . . . . . . . . 10  |-  ( suc  i  e.  m  ->  suc  i  e.  suc  m )
45 ordsucelsuc 6654 . . . . . . . . . . 11  |-  ( Ord  m  ->  ( i  e.  m  <->  suc  i  e.  suc  m ) )
4645biimpar 487 . . . . . . . . . 10  |-  ( ( Ord  m  /\  suc  i  e.  suc  m )  ->  i  e.  m
)
4744, 46sylan2 476 . . . . . . . . 9  |-  ( ( Ord  m  /\  suc  i  e.  m )  ->  i  e.  m )
4843, 47anim12i 568 . . . . . . . 8  |-  ( ( f  Fn  m  /\  ( Ord  m  /\  suc  i  e.  m )
)  ->  ( dom  f  =  m  /\  i  e.  m )
)
49 eleq2 2493 . . . . . . . . 9  |-  ( dom  f  =  m  -> 
( i  e.  dom  f 
<->  i  e.  m ) )
5049biimpar 487 . . . . . . . 8  |-  ( ( dom  f  =  m  /\  i  e.  m
)  ->  i  e.  dom  f )
5142, 48, 503syl 18 . . . . . . 7  |-  ( ( ta  /\  ( et 
/\  rh ) )  ->  i  e.  dom  f )
52513impb 1201 . . . . . 6  |-  ( ( ta  /\  et  /\  rh )  ->  i  e. 
dom  f )
5323, 52syl 17 . . . . 5  |-  ( ( R  FrSe  A  /\  ta  /\  et  /\  rh )  ->  i  e.  dom  f )
5419, 22, 53bnj1502 29488 . . . 4  |-  ( ( R  FrSe  A  /\  ta  /\  et  /\  rh )  ->  ( G `  i )  =  ( f `  i ) )
5554iuneq1d 4318 . . 3  |-  ( ( R  FrSe  A  /\  ta  /\  et  /\  rh )  ->  U_ y  e.  ( G `  i ) 
pred ( y ,  A ,  R )  =  U_ y  e.  ( f `  i
)  pred ( y ,  A ,  R ) )
5616, 30, 553eqtr4d 2471 . 2  |-  ( ( R  FrSe  A  /\  ta  /\  et  /\  rh )  ->  ( G `  suc  i )  =  U_ y  e.  ( G `  i )  pred (
y ,  A ,  R ) )
57 bnj570.24 . 2  |-  K  = 
U_ y  e.  ( G `  i ) 
pred ( y ,  A ,  R )
5856, 57syl6eqr 2479 1  |-  ( ( R  FrSe  A  /\  ta  /\  et  /\  rh )  ->  ( G `  suc  i )  =  K )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    /\ w3a 982   A.wal 1435    = wceq 1437    e. wcel 1867    =/= wne 2616   A.wral 2773    \ cdif 3430    u. cun 3431    C_ wss 3433   (/)c0 3758   {csn 3993   <.cop 3999   U_ciun 4293   dom cdm 4845   Ord word 5432   suc csuc 5435   Fun wfun 5586    Fn wfn 5587   ` cfv 5592   omcom 6697    /\ w-bnj17 29320    predc-bnj14 29322    FrSe w-bnj15 29326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1838  ax-8 1869  ax-9 1871  ax-10 1886  ax-11 1891  ax-12 1904  ax-13 2052  ax-ext 2398  ax-sep 4539  ax-nul 4547  ax-pr 4652  ax-un 6588
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2267  df-mo 2268  df-clab 2406  df-cleq 2412  df-clel 2415  df-nfc 2570  df-ne 2618  df-ral 2778  df-rex 2779  df-rab 2782  df-v 3080  df-sbc 3297  df-dif 3436  df-un 3438  df-in 3440  df-ss 3447  df-pss 3449  df-nul 3759  df-if 3907  df-sn 3994  df-pr 3996  df-tp 3998  df-op 4000  df-uni 4214  df-iun 4295  df-br 4418  df-opab 4476  df-tr 4512  df-eprel 4756  df-id 4760  df-po 4766  df-so 4767  df-fr 4804  df-we 4806  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-res 4857  df-ord 5436  df-on 5437  df-lim 5438  df-suc 5439  df-iota 5556  df-fun 5594  df-fn 5595  df-fv 5600  df-om 6698  df-bnj17 29321
This theorem is referenced by:  bnj571  29546
  Copyright terms: Public domain W3C validator