Mathbox for Jonathan Ben-Naim < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj852 Structured version   Visualization version   GIF version

Theorem bnj852 30245
 Description: Technical lemma for bnj69 30332. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj852.1 (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
bnj852.2 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
bnj852.3 𝐷 = (ω ∖ {∅})
Assertion
Ref Expression
bnj852 ((𝑅 FrSe 𝐴𝑋𝐴) → ∀𝑛𝐷 ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓))
Distinct variable groups:   𝐴,𝑓,𝑖,𝑛,𝑦   𝐷,𝑓,𝑖,𝑛   𝑅,𝑓,𝑖,𝑛,𝑦   𝑓,𝑋,𝑛
Allowed substitution hints:   𝜑(𝑦,𝑓,𝑖,𝑛)   𝜓(𝑦,𝑓,𝑖,𝑛)   𝐷(𝑦)   𝑋(𝑦,𝑖)

Proof of Theorem bnj852
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elisset 3188 . . . . . 6 (𝑋𝐴 → ∃𝑥 𝑥 = 𝑋)
21adantl 481 . . . . 5 ((𝑅 FrSe 𝐴𝑋𝐴) → ∃𝑥 𝑥 = 𝑋)
32ancri 573 . . . 4 ((𝑅 FrSe 𝐴𝑋𝐴) → (∃𝑥 𝑥 = 𝑋 ∧ (𝑅 FrSe 𝐴𝑋𝐴)))
43bnj534 30062 . . 3 ((𝑅 FrSe 𝐴𝑋𝐴) → ∃𝑥(𝑥 = 𝑋 ∧ (𝑅 FrSe 𝐴𝑋𝐴)))
5 eleq1 2676 . . . . . . 7 (𝑥 = 𝑋 → (𝑥𝐴𝑋𝐴))
65anbi2d 736 . . . . . 6 (𝑥 = 𝑋 → ((𝑅 FrSe 𝐴𝑥𝐴) ↔ (𝑅 FrSe 𝐴𝑋𝐴)))
76biimpar 501 . . . . 5 ((𝑥 = 𝑋 ∧ (𝑅 FrSe 𝐴𝑋𝐴)) → (𝑅 FrSe 𝐴𝑥𝐴))
8 biid 250 . . . . . . . 8 (∀𝑧𝐷 (𝑧 E 𝑛[𝑧 / 𝑛]((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓))) ↔ ∀𝑧𝐷 (𝑧 E 𝑛[𝑧 / 𝑛]((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓))))
9 bnj852.3 . . . . . . . . 9 𝐷 = (ω ∖ {∅})
10 omex 8423 . . . . . . . . . 10 ω ∈ V
11 difexg 4735 . . . . . . . . . 10 (ω ∈ V → (ω ∖ {∅}) ∈ V)
1210, 11ax-mp 5 . . . . . . . . 9 (ω ∖ {∅}) ∈ V
139, 12eqeltri 2684 . . . . . . . 8 𝐷 ∈ V
14 zfregfr 8392 . . . . . . . 8 E Fr 𝐷
158, 13, 14bnj157 30183 . . . . . . 7 (∀𝑛𝐷 (∀𝑧𝐷 (𝑧 E 𝑛[𝑧 / 𝑛]((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓))) → ((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓))) → ∀𝑛𝐷 ((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓)))
16 biid 250 . . . . . . . . . 10 ((𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
17 bnj852.2 . . . . . . . . . 10 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
18 biid 250 . . . . . . . . . 10 (((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓)) ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓)))
1916, 17, 9, 18, 8bnj153 30204 . . . . . . . . 9 (𝑛 = 1𝑜 → ((𝑛𝐷 ∧ ∀𝑧𝐷 (𝑧 E 𝑛[𝑧 / 𝑛]((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓)))) → ((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓))))
2016, 17, 9, 18, 8bnj601 30244 . . . . . . . . 9 (𝑛 ≠ 1𝑜 → ((𝑛𝐷 ∧ ∀𝑧𝐷 (𝑧 E 𝑛[𝑧 / 𝑛]((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓)))) → ((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓))))
2119, 20pm2.61ine 2865 . . . . . . . 8 ((𝑛𝐷 ∧ ∀𝑧𝐷 (𝑧 E 𝑛[𝑧 / 𝑛]((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓)))) → ((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓)))
2221ex 449 . . . . . . 7 (𝑛𝐷 → (∀𝑧𝐷 (𝑧 E 𝑛[𝑧 / 𝑛]((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓))) → ((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓))))
2315, 22mprg 2910 . . . . . 6 𝑛𝐷 ((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓))
24 r19.21v 2943 . . . . . 6 (∀𝑛𝐷 ((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓)) ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → ∀𝑛𝐷 ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓)))
2523, 24mpbi 219 . . . . 5 ((𝑅 FrSe 𝐴𝑥𝐴) → ∀𝑛𝐷 ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓))
267, 25syl 17 . . . 4 ((𝑥 = 𝑋 ∧ (𝑅 FrSe 𝐴𝑋𝐴)) → ∀𝑛𝐷 ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓))
27 bnj602 30239 . . . . . . . . . 10 (𝑥 = 𝑋 → pred(𝑥, 𝐴, 𝑅) = pred(𝑋, 𝐴, 𝑅))
2827eqeq2d 2620 . . . . . . . . 9 (𝑥 = 𝑋 → ((𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅)))
29 bnj852.1 . . . . . . . . 9 (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
3028, 29syl6bbr 277 . . . . . . . 8 (𝑥 = 𝑋 → ((𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ↔ 𝜑))
31303anbi2d 1396 . . . . . . 7 (𝑥 = 𝑋 → ((𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓) ↔ (𝑓 Fn 𝑛𝜑𝜓)))
3231eubidv 2478 . . . . . 6 (𝑥 = 𝑋 → (∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓) ↔ ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓)))
3332ralbidv 2969 . . . . 5 (𝑥 = 𝑋 → (∀𝑛𝐷 ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓) ↔ ∀𝑛𝐷 ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓)))
3433adantr 480 . . . 4 ((𝑥 = 𝑋 ∧ (𝑅 FrSe 𝐴𝑋𝐴)) → (∀𝑛𝐷 ∃!𝑓(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅) ∧ 𝜓) ↔ ∀𝑛𝐷 ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓)))
3526, 34mpbid 221 . . 3 ((𝑥 = 𝑋 ∧ (𝑅 FrSe 𝐴𝑋𝐴)) → ∀𝑛𝐷 ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓))
364, 35bnj593 30069 . 2 ((𝑅 FrSe 𝐴𝑋𝐴) → ∃𝑥𝑛𝐷 ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓))
3736bnj937 30096 1 ((𝑅 FrSe 𝐴𝑋𝐴) → ∀𝑛𝐷 ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   ∧ w3a 1031   = wceq 1475  ∃wex 1695   ∈ wcel 1977  ∃!weu 2458  ∀wral 2896  Vcvv 3173  [wsbc 3402   ∖ cdif 3537  ∅c0 3874  {csn 4125  ∪ ciun 4455   class class class wbr 4583   E cep 4947  suc csuc 5642   Fn wfn 5799  ‘cfv 5804  ωcom 6957  1𝑜c1o 7440   predc-bnj14 30007   FrSe w-bnj15 30011 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-reg 8380  ax-inf2 8421 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-om 6958  df-1o 7447  df-bnj17 30006  df-bnj14 30008  df-bnj13 30010  df-bnj15 30012 This theorem is referenced by:  bnj864  30246  bnj865  30247  bnj906  30254
 Copyright terms: Public domain W3C validator